论文部分内容阅读
贝叶斯网络分类器(BNC)结构学习是一个NP难题。贪婪搜索(GS)算法是一种有效且准确性较高的结构学习算法,但贪婪搜索算法很容易陷人局部最优。标准遗传算法是一种全局搜索优化算法,它通过模拟生物种群的进化过程,得到全局最优解。但就其个体而言,个体局部解的质量无法保证,不具备局部寻优的能力。提出了将两种算法相结合,以贝叶斯信息标准(BIC)测度为评价函数,得到一种混合遗传算法,实现了它们的优势互补。实验表明:该算法优于单独利用GS算法进行Bayesian网络结构学习,从而说明该算法的正确性和有效性。