论文部分内容阅读
Published auxiliary information can be helpful in conducting statistical inference in a new study.In this paper,we synthesize the auxiliary information with semiparametric likelihood-based inference for censoring data with the total sample size is available.We express the auxiliary information as constraints on the regression coefficients and the covariate distribution,then use empirical likelihood method for general estimating equations to improve the efficiency of the interested parameters in the specified model.The consistency and asymptotic normality of the resulting regression parameter estimators established.Also numerical simulation and application with different supposed conditions show that the proposed method yields a substantial gain in efficiency of the interested parameters.