论文部分内容阅读
针对标准支持向量机在P2P网络流量识别中不支持增量学习的问题.提出一种适于P2P网络流量识别的SVM快速增量学习方法。在对违背Karush—Kuhn—Tucker条件的新增正负样本集分别进行聚类分析基础上,运用聚类簇中心对支持向量机训练生成一个接近增量学习最优分类超平面的过渡超平面.并以此超平面为基准确定初始训练样本集上非支持向量和支持向量的互相转化.进而生成新的样本集实现SVM增量学习。理论分析和实验结果表明。该方法能有效简化增量学习的训练样本集.在不降低P2P网络流量识别精度的前提下.明显缩短SVM的