论文部分内容阅读
从文献资料中收集并整理了45组各类危险边坡数据实例,结合粗糙集理论的数据挖掘功能和BP神经网络理论的非线性映射功能,建立了基于粗糙集-BP神经网络(RS-BPNN)理论的边坡稳定性预测模型.利用粗糙集对离散化后的数据进行了属性约简,利用神经网络对约简前后的数据进行了网络训练和仿真,并对其中五组边坡的安全系数和稳定状态进行了预测.结果表明,未经约简的BP网络安全系数预测的平均误差率为14.51%,约简后的RS-BP网络预测的平均误差率为7.24%,且经过粗糙集约简后边坡的预测状态与边坡的实际状态更加吻合.