论文部分内容阅读
Quasi-solid state dye-sensitized solar cells based on chemically crosslinking with backbone polymers of poly(vinylpyridine-co-acrylonitrile) (P(VP-co-AN)) or poly(vinylimidazole-co-acrylonitrile) (P(VIM-co- AN)) and diiodide compounds of I(CH2)6I or I(CH2CH2O)nCH2CH2I solidified EC/PC/KI/I2 gel electrolytes have been fabricated. The ionic conductivities and apparent diffusion coefficients of I3-Of the electrolytes and cell performances have been investigated. Providing chemically crosslinking points, pyridine or imidazole from the backbone polymers benefited the open circuit voltage and fill factor of the cells. Consequently, the overall energy conversion efficiencies of the quasi-solid DSSCs improved over 10% even near 20% from that of the liquid electrolyte before solidification. Besides, the employing of crosslinker I(CH2CH2O)nCH2CH2I showed higher electrolytic and cell characters than that of I(CH2)6I.