论文部分内容阅读
目标识别是遥感高分辨率影像时代的重要应用方向。采用深度卷积神经网络对遥感影像学习训练,能够从遥感影像中自动提取出多个具有代表性的典型地物特征以及特征组合,并应用于多变而复杂的遥感影像数据中进行目标分类识别。本研究选用NWPU VHR-10数据应用于Faster R-CNN卷积神经网络模型中,并采用MAP进行评价,研究中得到了较好的检测精度,证明在遥感影像数据中采用深度卷积神经网络进行目标识别有着广阔的应用前景。