论文部分内容阅读
【摘要】通常把用于保护电力设备的自动装置称为继电保护装置,而把用于保护电力系统的称为电力系统安全自动装置。继电保护装置是一种以能及时反应电气设备发生故障和不正常运行状态时的物理量与正常运行时的差别为判据构成的自动装置,能作用于断路器跳闸或发出信号,因此它是保证电力设备安全运行的基本装备,任何电力元件不得在无继电保护的状态下运行。
【关键词】电力系统;继电保护;作用;任务
一、继电保护的基本性能要求
对电网继电保护的基本性能要求,包括可靠性、选择性、速动性和灵敏性。这些要求之间,有的相辅相成,有的相互制约,需要针对不同的使用条件,分别地进行协调。对这些问题的研究分析,是电网继电保护系统运行部门的头等大事。
1.选择性。基本含义是保护装置动作时,仅将故障元件从电力系统中切除,使停电范围尽量减小,以保证系统中非故障部分继续安全运行。
2.灵敏性。保护装置对其保护范围内的故障或不正常运行状态的反应能力称为灵敏性(灵敏度)。灵敏性常用灵敏系数来衡量。它是在保护装置的测量元件确定了动作值后,按最不利的运行方式、故障类型、保护范围内的指定点校验,并满足有关规定的标准。
3.速动性。速动性是指继电保护装置应以尽可能快的速度断开故障元件。这样就能减轻故障设备的损坏程度,减小用户在低电压情况下工作的时间,提高电力系统运行的稳定性。
4.可靠性。可靠性是指在保护装置规定的保护范围内发生它应该反应的故障时,保护装置应可靠地动作(即不拒动)。而在不属于该保护动作的其他任何情况下,则不应该动作(即不误动)。选择继电保护方案时,除设置需满足以上四项基本性能外,还应注意其经济性。即不仅考虑保护装置的投资和运行维护费,还必须考虑因装置不完善而发生拒动或误动对国民经济和社会生活造成的损失。
二、继电保护的任务
1.当被保护的电力设备发生故障时,应该由该设备的继电保护装置自动地、迅速地、有选择地向离故障设备最近的断路器发出跳闸命令,将故障设备从电力系统中切除,保证无故障设备继续运行,并防止故障设备继续遭到破坏。
2.当电力系统出现不正常运行状态时,根据不正常工作情况和设备运行维护条件的不同,或发出信号使值班人员能及时采取措施,或由装置自动进行调整(如减负荷),避免不必要的动作和由于干扰而引起的误动作。反应不正常工作状态的继电保护,通常都不需要立即动作,可带一定的延时。
3.继电保护与自动重合闸装置配合,可在输电线路发生瞬时性故障时,迅速恢复故障线路的正常运行,从而提高供电的可靠性。
由此可见,继电保护在电力系统中的主要作用是:防止事故的发生和发展,限制事故的影响和范围,最大限度地确保电力系统安全运行。继电保护是电力系统中一个重要的组成部分,对保证整个电力系统的安全运行具有十分重要的意义。
二、继电保护的基本原理与构成
1.继电保护的基本原理
1.电流保护。电力系统发生故障时总是伴随着电流的增大,电流保护就是反应于被保护设备通过的电流增大,超过它的签定位而动作的保护,即测量值多于整定值)时保护动作,如相电流保护、零序电流保护。
2.电压保护。电力系统发生故障时电压必然降低,反应于电压降低而动作的保护为低电压保护;当电力系统出现电压过高的不正常运行状态时,反应于电压升高的保护为过电压保护。
3.距离保护。除电流大小外,还配以母线电压的变化进行综合判断,实现的用于反应故障点到保护安装处电气距离的保护为距离保护,也称低阻抗保护。电网正常运行时,电压与电流的比值是负荷的阻抗,一般较大;而电力系统发生故障时,保护感受到的电压与电流的比值为故障点到保护安装处的阻抗,远远小于负荷阻抗。
4.功率方向保护。是利用电压和电流间的相位关系作为故障及其方向的判据。正常运行时测到的电压与电流间的相位角是负荷的阻抗角,一般为20°一30°,而故障时测到的阻抗角是线路阻抗角,—般为60一70°。此外,一般规定流过保护的电流正方向是母线流向线路。若故障时流过保护的电流滞后于电压为线路阻抗角φ,则可判定为正方向故障,若流过保护的电流滞后于电压的角度为180°十φ则可判为反方向故障。
以上保护均反应设备一侧电气量信息,具有明显的缺点,就是无法区分本设备末端和相邻设备始端故障,因为这两个位置的故障,反映在保护安装处的电压、电流量没有显著区别。因此很难迅速切除保护范围内任意点的故障。为此提出了反应两侧(多侧)电气量信息的保护原理,即差动保护。
差动保护己成为变压器、发动机、母线等元件设备的主保护,而应用在输电线路上则以纵联保护的形式出现。这是因为输电线路较长,需要将—侧电气量信息通过通信设备和通道传到另一侧去,两侧的电气量才能进行比较判断,即线路两侧之间发生的是纵向联系,所以称为输电线路纵联保护。纵联保护两端比较的电气量可以是流过两端的电流相量、电流相位和功率方向等,比较不同的电气量信息可构成不同原理的纵联保护。此外,将一端的电气量或用于被比较的特征传送到对端,可以来用不同的传输通道和性术,如有采用通过输电线路本身在工频信号上叠加一个高频载波信号的技术,称为高频保护。高频保护中比较两侧功率方向的称为方向高频保护,而比较两侧电流相位的称为相差高频保护。
2.继电保护的构成
继电保护原理虽然体现了电气设备运行状态的判别依据,但电气量信息的采集、判断,以及继电保护发出断路器跳闸命令等还需要一定的硬件设备才能实现,即需要继电保护装置。一般继电保护装置由测量比较、逻辑判断和执行输出三部分组成,如图1所示。
(1)测量比较部分。测量比较部分是根据保护原理测量被保护对象的有关电气量,与己给定的整定值进行比较,根据比较的结果,给出“是”、“非”、“0”或“1”性质的一组逻辑信号,从而判断保护是否应该起动。这部分通常由一个或多个测量比较元件构成,常见的如过电流继电器、阻抗继电器、功率方向继电器、差动继电器等。
(2)逻辑判断部分。逻辑判断部分是根据各测量比较元件输出的逻辑状态、性质、先后顺序、持续时间等,使保护装置按一定的逻辑关系判断故障的类型和范围,最后确定是否应该使断路器跳闸、发出信号或不动作,并将有关命令传给执行部分。继电保护中常用的逻辑回路有 “或”、“与”“否”、“延时起动”、“延时返回”以及“记忆”等回路。
(3)执行输出部分。执行输出部分是根据逻辑判断部分传送的信号,最后完成保护装置所担负的任务。如故障时动作于跳闸;不正常运行时,发出信号:正常运行时,不动作等。
参考文献
[1]梁永福.微机型继电保护装置的现场调试[J].电工技术,2008(05).
[2]冯海东,陈奕琴.谈继电保护故障处理的九种方法[J].广东科技,2008(20).
【关键词】电力系统;继电保护;作用;任务
一、继电保护的基本性能要求
对电网继电保护的基本性能要求,包括可靠性、选择性、速动性和灵敏性。这些要求之间,有的相辅相成,有的相互制约,需要针对不同的使用条件,分别地进行协调。对这些问题的研究分析,是电网继电保护系统运行部门的头等大事。
1.选择性。基本含义是保护装置动作时,仅将故障元件从电力系统中切除,使停电范围尽量减小,以保证系统中非故障部分继续安全运行。
2.灵敏性。保护装置对其保护范围内的故障或不正常运行状态的反应能力称为灵敏性(灵敏度)。灵敏性常用灵敏系数来衡量。它是在保护装置的测量元件确定了动作值后,按最不利的运行方式、故障类型、保护范围内的指定点校验,并满足有关规定的标准。
3.速动性。速动性是指继电保护装置应以尽可能快的速度断开故障元件。这样就能减轻故障设备的损坏程度,减小用户在低电压情况下工作的时间,提高电力系统运行的稳定性。
4.可靠性。可靠性是指在保护装置规定的保护范围内发生它应该反应的故障时,保护装置应可靠地动作(即不拒动)。而在不属于该保护动作的其他任何情况下,则不应该动作(即不误动)。选择继电保护方案时,除设置需满足以上四项基本性能外,还应注意其经济性。即不仅考虑保护装置的投资和运行维护费,还必须考虑因装置不完善而发生拒动或误动对国民经济和社会生活造成的损失。
二、继电保护的任务
1.当被保护的电力设备发生故障时,应该由该设备的继电保护装置自动地、迅速地、有选择地向离故障设备最近的断路器发出跳闸命令,将故障设备从电力系统中切除,保证无故障设备继续运行,并防止故障设备继续遭到破坏。
2.当电力系统出现不正常运行状态时,根据不正常工作情况和设备运行维护条件的不同,或发出信号使值班人员能及时采取措施,或由装置自动进行调整(如减负荷),避免不必要的动作和由于干扰而引起的误动作。反应不正常工作状态的继电保护,通常都不需要立即动作,可带一定的延时。
3.继电保护与自动重合闸装置配合,可在输电线路发生瞬时性故障时,迅速恢复故障线路的正常运行,从而提高供电的可靠性。
由此可见,继电保护在电力系统中的主要作用是:防止事故的发生和发展,限制事故的影响和范围,最大限度地确保电力系统安全运行。继电保护是电力系统中一个重要的组成部分,对保证整个电力系统的安全运行具有十分重要的意义。
二、继电保护的基本原理与构成
1.继电保护的基本原理
1.电流保护。电力系统发生故障时总是伴随着电流的增大,电流保护就是反应于被保护设备通过的电流增大,超过它的签定位而动作的保护,即测量值多于整定值)时保护动作,如相电流保护、零序电流保护。
2.电压保护。电力系统发生故障时电压必然降低,反应于电压降低而动作的保护为低电压保护;当电力系统出现电压过高的不正常运行状态时,反应于电压升高的保护为过电压保护。
3.距离保护。除电流大小外,还配以母线电压的变化进行综合判断,实现的用于反应故障点到保护安装处电气距离的保护为距离保护,也称低阻抗保护。电网正常运行时,电压与电流的比值是负荷的阻抗,一般较大;而电力系统发生故障时,保护感受到的电压与电流的比值为故障点到保护安装处的阻抗,远远小于负荷阻抗。
4.功率方向保护。是利用电压和电流间的相位关系作为故障及其方向的判据。正常运行时测到的电压与电流间的相位角是负荷的阻抗角,一般为20°一30°,而故障时测到的阻抗角是线路阻抗角,—般为60一70°。此外,一般规定流过保护的电流正方向是母线流向线路。若故障时流过保护的电流滞后于电压为线路阻抗角φ,则可判定为正方向故障,若流过保护的电流滞后于电压的角度为180°十φ则可判为反方向故障。
以上保护均反应设备一侧电气量信息,具有明显的缺点,就是无法区分本设备末端和相邻设备始端故障,因为这两个位置的故障,反映在保护安装处的电压、电流量没有显著区别。因此很难迅速切除保护范围内任意点的故障。为此提出了反应两侧(多侧)电气量信息的保护原理,即差动保护。
差动保护己成为变压器、发动机、母线等元件设备的主保护,而应用在输电线路上则以纵联保护的形式出现。这是因为输电线路较长,需要将—侧电气量信息通过通信设备和通道传到另一侧去,两侧的电气量才能进行比较判断,即线路两侧之间发生的是纵向联系,所以称为输电线路纵联保护。纵联保护两端比较的电气量可以是流过两端的电流相量、电流相位和功率方向等,比较不同的电气量信息可构成不同原理的纵联保护。此外,将一端的电气量或用于被比较的特征传送到对端,可以来用不同的传输通道和性术,如有采用通过输电线路本身在工频信号上叠加一个高频载波信号的技术,称为高频保护。高频保护中比较两侧功率方向的称为方向高频保护,而比较两侧电流相位的称为相差高频保护。
2.继电保护的构成
继电保护原理虽然体现了电气设备运行状态的判别依据,但电气量信息的采集、判断,以及继电保护发出断路器跳闸命令等还需要一定的硬件设备才能实现,即需要继电保护装置。一般继电保护装置由测量比较、逻辑判断和执行输出三部分组成,如图1所示。
(1)测量比较部分。测量比较部分是根据保护原理测量被保护对象的有关电气量,与己给定的整定值进行比较,根据比较的结果,给出“是”、“非”、“0”或“1”性质的一组逻辑信号,从而判断保护是否应该起动。这部分通常由一个或多个测量比较元件构成,常见的如过电流继电器、阻抗继电器、功率方向继电器、差动继电器等。
(2)逻辑判断部分。逻辑判断部分是根据各测量比较元件输出的逻辑状态、性质、先后顺序、持续时间等,使保护装置按一定的逻辑关系判断故障的类型和范围,最后确定是否应该使断路器跳闸、发出信号或不动作,并将有关命令传给执行部分。继电保护中常用的逻辑回路有 “或”、“与”“否”、“延时起动”、“延时返回”以及“记忆”等回路。
(3)执行输出部分。执行输出部分是根据逻辑判断部分传送的信号,最后完成保护装置所担负的任务。如故障时动作于跳闸;不正常运行时,发出信号:正常运行时,不动作等。
参考文献
[1]梁永福.微机型继电保护装置的现场调试[J].电工技术,2008(05).
[2]冯海东,陈奕琴.谈继电保护故障处理的九种方法[J].广东科技,2008(20).