论文部分内容阅读
针对动态图像序列中背景成像过程因各种因素而变化存在复杂性,提出了一种基于像素统计特性及细胞神经网络(CNN)的目标分割方法。首先建立图像每一像素点的高斯分布模型,并根据图像序列中的当前帧及历史帧信息自适应地调整模型的参数。然后结合图像的帧间信息将图像从空间域映射到统计域。最后在统计域中用细胞神经网络方法对其进行目标分割。由于CNN是由局部互连的细胞组成,因此易于用VLSI实现。通过对图像像素建立细胞近邻模型,可以获得较强的鲁棒运动目标分割。实验的结果反映了该方法的有效性。