激活解题思路 探究解题方法——证明不等式的多种思维历程

来源 :中学数学 | 被引量 : 0次 | 上传用户:zb272939419
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
<正>在历届高考解答题中,涉及不等式的试题,往往都是难度较大的压轴题.尤其是不等式的证明.为此,笔者总结了一些关于不等式证明的一些方法,以供参考.一、分析方法,利用函数的性质证明不等式1.利用函数最值最值法即利用函数的最大(小)值证明一些不等式,证明大体分两步进行,首先把不等式问题转化为一个函数的最值问题,再用导数讨论函数的最大值或最小值,从而得到值域的界限,推出不等式.
其他文献
<正>众所周知,柯西不等式在数学各个领域都有着广泛应用,它在不同领域的应用灵活多变,柯西不等式在数学当中有着很高地位,它的应用是数学知识之间渗透性、统一性的表现.柯西
本文基于船舶结构动力学的基本问题并围绕其相关领域——船舰振动模态、稳态响应、从振动到声学、船舶结构试验和检验、水下爆炸,对历史和发展现状进行了评述,提出了若干值得
介绍了一套基于单片机控制步进电机的自动售报机系统。系统主要是由两部分组成:前台售报和后台管理,可以使自动售报机的功能更加完善,操作更加便利。
森林资源是一种宝贵的资源,保护森林对我国的可持续发展有着重要意义。近些年来,我国一直很重视对森林的保护,制定了林地清收还林等政策,也一直在积极推动林业的发展。推动林
4月28日讯,上周中国钼贸易商发往亚洲和西方国家的氧化钼报价为17.3—17.6美元/磅钼(韩国和鹿特丹仓库到岸价),较之前的17.3美元/磅钼有所上扬,主要因为市场买兴增强。有中国贸易商称,他
三个世纪之后,人们终于证明了那些细小的白色粉末根本就不是盐,医学家们为它起了一个诱人的名字——葡萄糖。
当前是国有企业面临转型升级的关键时期,国家电力体制也再度开启新模式。云南省被确定为电力体制全方位改革的试点省份之一,云南的水电行业面临着前所未有的挑战。如何更好地
文化研究之于欧美和中国,虽然具有相同的话语形态,却未必具有相通的学术理念。不同的历史背景养育了不同的思想主张。渴望获得体制认可,又期待改造这个体制所依赖的世界;一方
20世纪的外国文学,以翻译、绍介和评论为本体,从而形成了一种"译介评"的研究模式。这种模式以"洋为中用"的拿来主义为研究观,是一种以自我为中心的单向度的封闭孤立的研究范
油田工程建设领域是腐败问题高发易发的重点领域,因此,分析油田工程建设项目腐败案件,查找工程建设各环节存在的廉洁风险点,提出对腐败风险点控制的建议至关重要。