论文部分内容阅读
在分析传统BP算法的不足的基础上,提出了将Levenbery-Marquardt优化法与神经网络模型相结合的L-M优化BP算法。此方法与传统算法相比学习速度得到了提高,网络的收敛加快,尽量避免了系统陷入局部最小;针对某电力局某地区的单条线路的实际数据,采用基于Levenbery-Marquardt优化的BP算法的神经网络模型对其进行了仿真,结果表明该方法具有较高的预测精度和较强的适应能力。