论文部分内容阅读
设Pn(x)为n次多项式,a0≠0,m≥2且m∈N,得到形如∫Pn(x)ma0x3+a1x2+a2x+a3dx的三次无理函数积分可解的充要条件,且其解的形式为∫Pn(x)ma0x3+a1x2+a2x+a3dx=Qn-2(x).m(a0x3+a1x2+a2x+a3)m-1+C,其中Qn-2(x)为各项系数待定的(n-2)次多项式.运用待定系数法可求出Qn-2(x)的各项系数.