论文部分内容阅读
目的
研究利用生成对抗网络(GAN)建立头颈部肿瘤MRI图像与CT图像的映射模型,实现MRI引导放疗中伪CT (sCT)的预测生成。
方法收集45例鼻咽癌患者治疗前影像信息与IMRT计划信息。首先对MRI (T1)和CT图像进行刚性配准、裁剪、去背景、数据增强等预处理操作;其次对病例进行GAN训练,随机选取30例作为训练集放入网络进行建模学习,另15例用于测试。比较预测sCT与真实CT的图像质量,以及后续比较预测sCT进行重计算的剂量分布与真实计划的剂量分布。
结果测试集的预测sCT与实际CT图像质量比较显示,二者误差较小,体素平均绝对误差值为(79.15±11.37) HU,结构相似性系数值为0.83±0.03。sCT重计算的剂量分布与实际剂量较为接近,不同区域水平下的MAE值相对处方剂量均<1%。在2mm/2%、3mm/3%准则下,所有病例sCT重计算剂量分布的γ通过率均>92%、>98%。
结论提出并实现了使用GAN进行鼻咽癌患者sCT的生成,为MR-IGRT实施奠定了基础。图像质量与剂量学比较均显示了方法的可行性与准确性。