Design,fabrication and experimental research for an electrohydrodynamic micropump

来源 :Science China(Technological Sciences) | 被引量 : 0次 | 上传用户:dabobo38
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
This paper presented a novel electrohydrodynamic (EHD) micropump based on MEMS technology. The working mechanisms and classification of EHD micropump were introduced. The fabrication process of EHD micropump was presented with the material selection,optimal design of microelectrode and assembly process. Static pressure experiments and flow experiments were carried out using different fluid and the channel depth. The results indicated that the micropump could achieve a maximum static pressure head of 268 Pa at an applied voltage of 90 V. The maximum flow rate of the micropump-driven fluid could reach 106 μL/min. This paper analyzed the future of combining micropump with heat pipe to deal with heat dissipation of high power electronic chips. The maximum heat dissipation capacity of 87 W/cm2 can be realized by vaporizing the micropump-driven liquid on vaporizing section of the heat pipe. This paper presented a novel electrohydrodynamic (EHD) micropump based on MEMS technology. The working mechanisms and classification of EHD micropump were presented. The fabrication process of EHD micropump was presented with the material selection, optimal design of microelectrode and assembly process. Static pressure experiments and flow experiments were carried out using different fluid and the channel depth. The results indicated that the micropump could achieve a maximum static pressure head of 268 Pa at an applied voltage of 90 V. The maximum flow rate of the micropump-driven fluid could reach 106 μL / min. This paper analyzed the future of combining micropump with heat pipe to deal with heat dissipation of high power electronic chips. The maximum heat dissipation capacity of 87 W / cm2 can be realized by vaporizing the micropump-driven liquid on vaporizing section of the heat pipe.
其他文献
一年过去了,妈妈让我整理这一年来我们家的开支情况。
在分别介绍宏观、介观、微观、原子和电子尺度材料模型研究的基础上,论述了多尺度材料模型(MMM)这一新兴的跨学科的前沿研究领域产生的前提、概念及其在材料科学,特别是在宏