论文部分内容阅读
DBSCAN是一个基于密度的聚类算法。该算法将具有足够高密度的区域划分为簇,并可以在带有“噪声”的空间数据库中发现任意形状的聚类。但DBSCAN算法没有考虑非空间属性,且DBSCAN算法需扫描空间数据库中每个点的ε-邻域来寻找聚类,这使得DBSCAN算法的应用受到了一定的局限。文中提出了一种基于DBSCAN的算法,可以处理非空间属性,同时又可以加快聚类的速度。