论文部分内容阅读
Owing to the interactions among the complex terrain, bottom materials, and the complicate hydrodynamics, typhoon waves show special characteristics as big waves appeared at the high water level(HWL) and small waves emerged at low and middle water levels(LWL and MWL) in radial sand ridges(RSR). It is assumed that the mud damping, sandy bed friction and wave breaking effects have a great influence on the typhoon wave propagation in this area. Under the low wave energy, a mud layer will form and transport into the shallow area, thus the mud damping effects dominate at the LWL and the MWL. And high Collins coefficient(c around 1) can be applied to computing the damping effects at the LWL and the MWL. But under the high wave energy, the bottom sediment will be stirred and suspended, and then the damping effects disappear at the HWL. Thus the varying Collins coefficient with the water level method(VCWL) is implemented into the SWAN to model the typhoon wave process in the Lanshayang Channel(LSYC) of the RSR, the observed wave data under “Winnie”(“9711”) typhoon was used as validation. The results show that the typhoon wave in the RSR area is able to be simulated by the VCWL method concisely, and a constant wave breaking coefficient(γ) equaling 0.78 is better for the RSR where wide tidal flats and gentle bed slopes exist.
Owing to the interactions among the complex terrain, bottom materials, and the complicate hydrodynamics, typhoon waves show special characteristics as big waves appeared at the high water level (HWL) and small waves emerged at low and middle water levels (LWL and MWL) in Under the low wave energy, a mud layer will form and transport into the shallow area, thus the mud damping effects dominate at the LWL and the MWL. And high Collins coefficient (c around 1) can be applied to computing the damping effects at the LWL and the MWL. But under the high wave energy, the bottom sediment will be stirred and suspended, and then the damping effects disappear at the HWL. Thus the varying Collins coefficient with the water level method (VCWL) is implemented into the SWAN to model the typhoon wave process in the Lanshayang Channel LSYC) of the RSR, the observed wave data under “Winnie ” ( “9711 ”) typhoon was used as validation. The results show that the typhoon wave in the RSR area is able to be simulated by the VCWL method concisely , and a constant wave breaking coefficient (γ) equaling 0.78 is better for the RSR where wide tidal flats and gentle bed slopes exist.