论文部分内容阅读
为保证子结构拟动力试验中数值子结构的可靠性,模型参数在线识别与更新方法逐渐受到关注。对于钢筋混凝土结构,当采用纤维模型建立数值子结构时,混凝土材料本构模型参数的选择具有较大不确定性。因此,该文提出了基于隐性卡尔曼滤波器在线识别混凝土材料本构模型参数的方法。首先,对材料本构模型参数进行分类,定义了本构参数与非本构参数,提出了约束混凝土与非约束混凝土的一致本构方程。然后,针对观测量为混凝土应力的情况进行数值仿真分析,验证了此方法的可行性。最后,通过修改Open Sees源代码,实现了此方法在观测量为构件恢复力情况下的应用。研究结果表明该文提出的方法具有较好的稳定性与较高的精度,从而在很大程度上提高了数值模型的可靠性。
In order to ensure the reliability of numerical substructure in quasi-dynamic test of substructure, the method of on-line identification and updating of model parameters has drawn more and more attention. For reinforced concrete structures, when using the fiber model to establish numerical substructure, the choice of constitutive model parameters of concrete has greater uncertainty. Therefore, this paper presents a method for on-line identification of constitutive model parameters of concrete based on implicit Kalman filter. Firstly, the parameters of material constitutive model are classified, constitutive parameters and non-constitutive parameters are defined, and a uniform constitutive equation of constrained concrete and unconstrained concrete is proposed. Then, numerical simulation analysis of the case of the observed concrete stress is carried out to verify the feasibility of this method. Finally, by modifying the Open Sees source code, the application of this method in the case of observational component resilience is realized. The results show that the proposed method has good stability and high accuracy, which greatly improves the reliability of the numerical model.