论文部分内容阅读
城市交通流具有复杂性、时变性和随机性,如何实时准确的预测交通流量是实现智能交通诱导及控制的前提。结合交通流的时间序列特性,提出基于改进支持向量机的交通流预测算法,该算法能够克服神经网络预测的不足,对支持向量机算法在嵌入维数、核函数和参数选择上进行了改进.实验仿真结果表明,该算法具有很好的预测精度和适用性。