论文部分内容阅读
以股票预测为背景,在一种在线SVR算法AOSVR中,引入Cherkassky参数选择策略,形成自适应参数的AOSVR算法.根据时间序列的变化,通过在线调整SVR参数达到更好的预测精度和泛化能力.另外,针对股票市场特性,利用AOSVR的"忘记"阈值丢掉早期数据来集中刻画近期的股市特点.将自适应参数的AOSVR算法应用到上证综合指数构成的时间序列上,取得了良好的预测效果.