论文部分内容阅读
高光谱图像分类是利用高光谱数据图谱合一且光谱信息丰富的特点,对图像中的每个像素进行分门别类,以达到对地物目标进行高精度分类和自动化识别的目的,是对地观测的重要组成部分。在分析高光谱图像特点的基础上,本文从普通机器学习和深度学习这两方面对高光谱图像像素级分类的研究进展及效果进行总结、评述和比较,通过具体实验的结果对比,直观地展现各种算法的优劣。针对高光谱分类问题,本文从两个方面对今后的研究方向及发展前景进行了分析和展望。一方面,在算法研究上,高光谱图像分类算法可在保证分类精度的前提下降低算法的复杂度,