论文部分内容阅读
软件在其生命周期中不断地发生变更,以适应需求和环境的变化.为了及时预测每次变更是否引入了缺陷,研究者们提出了面向软件源代码变更的缺陷预测方法.然而现有方法存在以下3点不足:(1)仅实现了较粗粒度(事务级和源文件级变更)的预测;(2)仅采用向量空间模型表征变更,没有充分挖掘蕴藏在软件库中的程序结构、自然语言语义以及历史等信息;(3)仅探讨较短时间范围内的预测,未考虑在长时间软件演化过程中由于新需求或人员重组等外界因素所带来的概念漂移问题.针对现有的不足,提出一种面向源代码变更的缺陷预测方法.该方法将细粒度(