论文部分内容阅读
课堂提问,在课堂教学中随处可见。但提问却不是随心所欲的,它直接关系着课堂教学的实效性。教师在课前必须深思熟虑,精心设计每一个提问,使每一个课堂提问都能恰到好处,充分激发学生的想象力和好奇心,激起学生对知识的兴趣,增强学生探究的欲望,从而提升课堂教学质量。
一、直奔主题,简洁明确
在低年级数学课堂,经常能听到儿童化的声音:“我们一起去大森林里……” “你们喜欢做游戏吗?”“你们喜欢玩开火车吗?”……这些为情境而情境的数学问题,其实一点数学意思都没有,毫无必要。很少有学生进过森林,更不可能有学生开过火车,学生即使回答了,也是顺着教师思路的无效的回答。哪怕就是有学生给予否定回答,或者没有学生回答,也无力阻止教师继续“去森林”或者“开火车”等等。这还不如直奔主题、开门见山来得好,来得简洁明确。
片段1:“9加几”教学(一上)
师:9加5可以怎么算?
生1:9 1=10,再加4等于14。
师:还有不同的算法吗?
生2:可以5加5等于10,再加4等于14。
师:还有吗?
生3:可以数上去,10,11,12,13,14。
师:还有吗?
生4:还可以从5开始数,6,7,8……13,14。
理解“凑十法”是这节课的重点。当学生已经能用“凑十法”这种思维方法进行计算时,教师仍追问学生“还有吗”,显然偏离了本课的教学目标,也忽略了本课的重点。其实,当有学生用“凑十法”计算时,教师只要问:为什么这样做?你能说出它的意思吗?这样设问就有利于启发全班学生深入思考“凑十法”,有利于教学目标的完成。因此,课堂提问一定要扣紧教材,为学习的目标和要求服务,突出重点,简洁、明确地解决问题。
二、走进学生,贴近生活
数学来源于生活。生活中的小朋友活泼、好动、好玩、好奇、好胜。教师在课堂中提问时,要时刻注意这一些,随机应变,提高学生的积极性。
片段2:“可能性”教学(三上)
师:你们在玩游戏之前通常用什么来定先后顺序呢?
生:……
师:老师想学拳布剪这个游戏,有谁能教我?(请两生上前示范)
师:(点头微笑)嗯,我学会了。但我一定要赢,有办法吗?能一定赢吗?
(生思索,个别学生在底下说:不能)
生:因为每次对手所出的不一样,输赢要看两个人出什么。
师:所以,“我一定赢”成立吗?那应该说成什么?
生:可能赢。
师:“可能”这个词用得真好!(师板书:可能)
师:下面我们开始游戏。我出石头,你会出什么?结局如何?
生:我出布,我会赢。(开心地笑)
师:能说得更有信心点吗?
生:我出布,我一定会赢。(师板书:一定)
师:有不同的出法吗?(师巡视,重复问题)
生:我出石头,平局。(淡淡地笑)
师:还有其他的出法吗?
生:出剪刀,会输。(失落地苦笑)
师:能赢吗?
生齐答:不可能。(师板书:不可能)
教学过程中,教师从学生生活中常玩的游戏出发,从提问到示范教学,再到提问,一环套一环,整个过程时而平淡,时而高昂。“我一定要赢,有办法吗?”这一问题的抛出,让学生思绪万千,激发了学生的好奇心,让学生充分回忆游戏过程中出现的各种现象,得出结论。“我出石头,你会出什么?结局如何?”三种结局,往往学生只会想到积极的一面:“我出布,我会赢。”简单的回答,没有突现出主题,教师进一步启发追问:“能说得更有信心点吗?”引导学生“一定赢”的肯定回答。而“平局”、“输”的结局,学生是拒绝接受的,在老师的启发下,才有了少数人接受,这充分体现了学生争强好胜的心理。
三、循序渐进,逐层深化
心理学认为,学生对知识的认识掌握,总是由不懂到懂、由浅到深的。教师在整个教学过程中,充当一个引导者,在关键的时刻提出恰当的问题,引发学生的思考,加速知识深化过程。
片段3:“三角形内角和”教学(四下)
(课件出示等腰直角三角形一个)
师:这个三角形的三个内角和是多少?你怎么知道的? 生:180度。直接加的,直角三角形,90 45 45=180度。
(课件演示把该三角形平分成两个直角三角形。)
师:这两个直角三角形的内角和又分别是多少?
生:90度。180度的一半等于90度。
师:其他同学认为这样计算对吗?(课件演示过程。)
生:(通过观察和思考)各是180度。
师:任意画一个三角形,把三个角剪下来拼一拼,你能拼成什么角?
问题的设计,由浅入深,环环相扣,层层递进,使学生积极思考,把学生的思维逐步引向深化。问题和探讨一起展开,学生学得轻松,思维顺畅,重难点迎刃而解。
总之,提问,一个简简单单的方法,却是一门高深的学问。在教学中,教师应科学地设计每一个课堂提问,营造积极的课堂气氛,提高课堂教学效率,真正发挥教师的主导作用和学生的主体作用。
一、直奔主题,简洁明确
在低年级数学课堂,经常能听到儿童化的声音:“我们一起去大森林里……” “你们喜欢做游戏吗?”“你们喜欢玩开火车吗?”……这些为情境而情境的数学问题,其实一点数学意思都没有,毫无必要。很少有学生进过森林,更不可能有学生开过火车,学生即使回答了,也是顺着教师思路的无效的回答。哪怕就是有学生给予否定回答,或者没有学生回答,也无力阻止教师继续“去森林”或者“开火车”等等。这还不如直奔主题、开门见山来得好,来得简洁明确。
片段1:“9加几”教学(一上)
师:9加5可以怎么算?
生1:9 1=10,再加4等于14。
师:还有不同的算法吗?
生2:可以5加5等于10,再加4等于14。
师:还有吗?
生3:可以数上去,10,11,12,13,14。
师:还有吗?
生4:还可以从5开始数,6,7,8……13,14。
理解“凑十法”是这节课的重点。当学生已经能用“凑十法”这种思维方法进行计算时,教师仍追问学生“还有吗”,显然偏离了本课的教学目标,也忽略了本课的重点。其实,当有学生用“凑十法”计算时,教师只要问:为什么这样做?你能说出它的意思吗?这样设问就有利于启发全班学生深入思考“凑十法”,有利于教学目标的完成。因此,课堂提问一定要扣紧教材,为学习的目标和要求服务,突出重点,简洁、明确地解决问题。
二、走进学生,贴近生活
数学来源于生活。生活中的小朋友活泼、好动、好玩、好奇、好胜。教师在课堂中提问时,要时刻注意这一些,随机应变,提高学生的积极性。
片段2:“可能性”教学(三上)
师:你们在玩游戏之前通常用什么来定先后顺序呢?
生:……
师:老师想学拳布剪这个游戏,有谁能教我?(请两生上前示范)
师:(点头微笑)嗯,我学会了。但我一定要赢,有办法吗?能一定赢吗?
(生思索,个别学生在底下说:不能)
生:因为每次对手所出的不一样,输赢要看两个人出什么。
师:所以,“我一定赢”成立吗?那应该说成什么?
生:可能赢。
师:“可能”这个词用得真好!(师板书:可能)
师:下面我们开始游戏。我出石头,你会出什么?结局如何?
生:我出布,我会赢。(开心地笑)
师:能说得更有信心点吗?
生:我出布,我一定会赢。(师板书:一定)
师:有不同的出法吗?(师巡视,重复问题)
生:我出石头,平局。(淡淡地笑)
师:还有其他的出法吗?
生:出剪刀,会输。(失落地苦笑)
师:能赢吗?
生齐答:不可能。(师板书:不可能)
教学过程中,教师从学生生活中常玩的游戏出发,从提问到示范教学,再到提问,一环套一环,整个过程时而平淡,时而高昂。“我一定要赢,有办法吗?”这一问题的抛出,让学生思绪万千,激发了学生的好奇心,让学生充分回忆游戏过程中出现的各种现象,得出结论。“我出石头,你会出什么?结局如何?”三种结局,往往学生只会想到积极的一面:“我出布,我会赢。”简单的回答,没有突现出主题,教师进一步启发追问:“能说得更有信心点吗?”引导学生“一定赢”的肯定回答。而“平局”、“输”的结局,学生是拒绝接受的,在老师的启发下,才有了少数人接受,这充分体现了学生争强好胜的心理。
三、循序渐进,逐层深化
心理学认为,学生对知识的认识掌握,总是由不懂到懂、由浅到深的。教师在整个教学过程中,充当一个引导者,在关键的时刻提出恰当的问题,引发学生的思考,加速知识深化过程。
片段3:“三角形内角和”教学(四下)
(课件出示等腰直角三角形一个)
师:这个三角形的三个内角和是多少?你怎么知道的? 生:180度。直接加的,直角三角形,90 45 45=180度。
(课件演示把该三角形平分成两个直角三角形。)
师:这两个直角三角形的内角和又分别是多少?
生:90度。180度的一半等于90度。
师:其他同学认为这样计算对吗?(课件演示过程。)
生:(通过观察和思考)各是180度。
师:任意画一个三角形,把三个角剪下来拼一拼,你能拼成什么角?
问题的设计,由浅入深,环环相扣,层层递进,使学生积极思考,把学生的思维逐步引向深化。问题和探讨一起展开,学生学得轻松,思维顺畅,重难点迎刃而解。
总之,提问,一个简简单单的方法,却是一门高深的学问。在教学中,教师应科学地设计每一个课堂提问,营造积极的课堂气氛,提高课堂教学效率,真正发挥教师的主导作用和学生的主体作用。