论文部分内容阅读
基于隐尔马可夫模型(HMM)的强制对齐方法被用于文语转换系统(TTS)语音单元边界切分.为提高切分准确性,本文对HMM模型的特征选择,模型参数和模型聚类进行优化.实验表明:12维静态Mel频率倒谱系数(MFCC)是最优的语音特征;HMM模型中的状态模型采用单高斯;对于特定说话人的HMM模型,使用分类与衰退树(CART)聚类生成的绑定状态模型个数在3 000左右最优.在英文语音库中音素边界切分的实验中,切分准确率从模型优化前的77.3%提高到85.4%.