论文部分内容阅读
柑橘隔年结果现象严重,花量统计有助于果园的规划管理,并对产量预测有重要意义,但是柑橘单一植株花量巨大,花朵紧凑密集,花期树叶遮挡覆盖,对花量计算造成很大的阻碍。对此该研究提出基于实例分割的柑橘花朵识别与花量统计方法,以花期的柑橘树冠图像为样本进行花朵实例的识别及分割,通过对MaskR-CNN主体卷积部分和掩膜分支部分的优化,实现对复杂结构图像中密集小尺度柑橘花朵目标的高效检测、获取图像中可见花数量。结果显示,该方法花量识别神经网络的平均精度为36.3,花量计算误差为11.9%,对比未优化MaskR-