论文部分内容阅读
分类学习任务中,在获取数据的过程中会不可避免地产生噪声,特别是标签噪声的存在不仅使得学习模型更复杂,而且容易造成过拟合并导致分类器泛化能力的下降。标签噪声过滤算法虽然在一定程度上可以解决上述问题,但是仍然存在噪声识别能力较差、分类效果不够理想以及过滤效率低等问题。针对这些问题,提出一种基于标签置信度分布的局部概率抽样方法来进行标签噪声过滤。首先利用随机森林分类器对样本的标签进行投票,从而获取每个样本的标签置信度;然后根据标签置信度的大小,将样本划分为易识别样本和难识别样本;最后分别采用不同的过滤策略