论文部分内容阅读
随机森林(RF)是众多分类算法中精确度较高的算法,但其精确度还有提升的需求。文章通过分析C4.5算法和CART算法的计算过程,比较了两者的异同点,提出了一种新的混合随机森林算法,并使用公共的UCI数据集进行实证分析,实验数据表明该算法可以提高随机森林的精确度。从而,使随机森林算法的应用领域得到了扩大。