论文部分内容阅读
针对传统的视觉词袋(bag of visual words,BoVW)模型忽略了视觉单词的空间位置信息的问题,文章提出一种基于视觉单词共生矩阵的图像分类方法。首先对整幅图像进行空间金字塔分解,得到一系列图像块;然后针对每一图像块中的SIFT点,在其空间邻域范围内构建视觉单词共生矩阵(visual words co-occurrence matrix,VWCM)单元,并得到该图像块对应的视觉单词共生矩阵;最后设计出一种新的空间金字塔共生矩阵核(spatial pyramid co-occurrence