黑洞中的小宇宙

来源 :大科技·科学之谜 | 被引量 : 0次 | 上传用户:jackfbi
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
  关于宇宙和黑洞,我有一些想法。黑洞会吸收任何物质,那么在黑洞内有可能有一个“小宇宙”!
  那么黑洞中的物质是怎么来的呢?我们都知道,黑洞的巨大引力足以撕碎所有物品,当黑洞的引力将掉入其中的物质撕碎之后,这些物质在它的“小宇宙”内重新合成新的物质,这就是组合黑洞内“小宇宙“的物质。不过,因为黑洞内的空间是有限的,并且不是很大,所以合成的星体也就不会很大了。
  假如我们这个宇宙就是黑洞中的“小宇宙”,那么我相信我们的宇宙外面肯定有一个比我们大千千万万亿亿亿亿亿倍的宇宙,它们中所有物体(除粒子外)都比我们大!在那个宇宙中,一毫米的计量单位也许在我们看来是千千万万亿亿亿亿亿毫米!也正因为尺度的问题,我们可能很难对外面的大宇宙进行研究。
  另外,科学家所说的宇宙是从一个“奇点”爆炸而来的,这个“奇点”,也许只是黑洞中最大的恒星发生了爆炸。
  主持人:这位网友的观点很有趣,我刊在2012年第7期的刊物上刊登了一篇名为《我们就生活在黑洞里》,文章探讨的就是这个观点。宇宙对于我们人类而言,还存在太多太多的谜团,我们能看到的世界太有限,探索之路还很长。
其他文献
从2015年起,我国将斥资1.7万亿元治理包括雾霾在内的空气污染。据称,将更多地采用人工降雨的办法来消除雾霾。  我们对人工降雨已非常熟悉。这项技术的原理是:用炮弹或导弹把碘化银粉末撒播到云中,碘化银粉末为云中的水汽或小冰晶提供一个个凝结核,水汽或小冰晶围绕凝结核凝聚,形成较大的水滴或冰晶,然后以雨雪的形式降到地面。不过,实施人工降雨有个条件:大气中水汽的湿度足够高,而又缺少必要的凝结核。  但是
期刊
我刊2011年05期曾介绍过《令人惊惧的步行鱼》,一条鱼(步行鲶)大摇大摆地走,简直能把人吓晕。然而大多数人有所不知,在太平洋和大西洋的热带海域,尤其在印尼附近海域,海底步行的鱼竟然很普遍!如果潜水去观察一下,人会觉得那儿的鱼都成精了。  这些鱼多数会模仿周围的环境,改变自身的颜色和外表,与环境融合在一起,有时像海底的石头,有时像珊瑚礁,有时像一堆海绵……不仔细看,很难分辨出来,海底的其他动物更难
期刊
这些由炙热恒星创造出来的“云朵”,它们可不只是一团模糊的气体云,而是有特别形状的。  1758年,一位法国天文爱好者发现金牛座的恒星之间,有一个云雾状斑块,形状很像彗星,但是它的位置似乎不会变化,这说明它不是彗星,那么它是什么呢?天文学家经过仔细辨认之后,将这个云雾状天体命名为星云。这是人们第一次正式发现星云。  星云其实是由气体和尘埃构成的分子云。它们跟地球天空上的云朵一样,经常会呈现各种各样的
期刊
我认为世界是虚幻的,可以通过这样的一个实验来证明:众所周知,人的思想会由于环境不同而发生变化。我设想了一个理想实验(注意:是理想实验):把两个完全相同的人从一出生(当然不是同一个时间)就放进完全相同环境中,控制每日的固定外来干扰也相同。(现在换成实际的实验:把两个除人之外其他合法的克隆的生物放入近乎完全相同的环境中,同样控制固定外来干扰相同)如果他们的生命轨迹完全或很相近,那么就表明了如果组成人(
期刊
假设不久的将来,科学家用先进的望远镜发现了地球最近的邻居——4.3光年之外的半人马座α星附近有另一个地球,暂且被人类命名为地球2,甚至还发现了地球2上还有生命的迹象!这一发现令人类激动万分,马上就想去探测地球2上究竟都有些什么。但是想是很容易的,做是很难的,虽然地球2是我们的近邻,但那也是光需要4年多的时间才能到达的地方。怎么办?  这不像太阳系内的行星,我们可以发射一些探测器去探测,探测的结果也
期刊
在我国北方,一个严重的问题是土地沙漠化。由于过度放牧,地表脆弱的植被被破坏之后,导致固沙能力下降。  在抗沙漠化的斗争中,我国科学家最近找到一位新的盟友——细菌。如果在沙漠边缘的半干旱地表,撒上一种叫“藻青菌”的光合作用细菌,它们就能起到固沙的作用。  科学家从附近的池塘中用卡车运来富含藻青菌的淤泥,喷洒到长有稀疏植被的沙地上。藻青菌形成的粘性丝状物把沙粒“网”在一个地方,不让大风吹走。它们自身则
期刊
经过近两年来证据的不断积累,怀疑全球气候变暖是一场骗局的人越来越少了。多数人现在关心的是,“变暖的速度有多快?变化会不会让我们措手不及?”而要回答这些问题,我们先要搞清楚,目前的气候变化有没有接近转折点。因为一过了转折点,就走向一条不可逆转的道路,到时候再去阻止,就事倍功半。而要搞清楚这一点,则需要科学家充分估计导致气候变暖的各种因素。这样,一种我们过去很少注意的生态系统——泥炭藓湿地,就进入了科
期刊
人们爱看足球,是因为敌我双方的攻守动作太精彩了。不过,当你在看足球攻守“热闹”的同时,是否知道其中的一些科学门道呢?  “电梯球”  为什么特别难招架?  早些时候,让足球守门员头痛的是“香蕉球”。这种球看似抛物线球,踢向某一个方向,但实际上它不会沿着完整的抛物线路线走,而是在下落的过程中会发生偏转,让守门员难以判断和接招。但近些年来,比“香蕉球”更让守门员头痛的则是“电梯球”。  这种球一开始就
期刊
磁场可能弥漫整个宇宙  在支配万物运动的4种基本作用力(引力、电磁力、强核力和弱核力)中,到了宇宙天体这一尺度,几乎单剩了引力“一枝独秀”。不仅宇宙的等级结构——恒星聚集成星系,星系组成星系团,星系团又麇集为超星系团——是由引力塑造的,就是所有的天体,恒星、行星、白矮星和黑洞等,也都是引力打造的。  然而,说到具体天体的形成,引力并非唯一的玩家——还有一种力纵横于宇宙之间,它就是磁力。宇宙中一些最
期刊
两个物体,保持质量不变,距离不变,两者之间的万有引力会变化吗?你也许会说,当然不变;万有引力定律告诉我们,引力与质量成正比,与距离平方成反比(比例系数称作G)。当质量和距离都不变时,引力当然也不变。  没错,万有引力定律是这么说的,G是个常数。但要是G不是常数,而是会随时间变化的量呢?那这样一来,纵使质量和距离都不变,引力也可能发生变化。最近,物理学家通过对G的测量,就对G是不是常数产生了怀疑。如
期刊