论文部分内容阅读
MNIST数据集是检验机器学习算法性能常用的数据集。本文以MNIST数据集为例,研究四种机器学习方法的性能。首先,介绍支撑向量机、随机森林、BP神经网络和卷积神经网络;其次,将四种学习方法在MNIST数据集上训练学习;最后,对四种学习模型的性能做对比分析。就实验结果而言,卷积神经网络在性能上优于其它三种学习算法。