论文部分内容阅读
中图分类号:TV551文献标识码:A 文章编号:
0 前言
随着社会的快速发展,城市基础设施建设也加快进行。由于深基坑支护体系一般为临时性工程,往往得不到应有的重视,致使深基坑工程支护体系事故发生率较高;而安全事故一旦发生,不仅延误工期,造成较大经济损失,往往对城市周边环境影响很大,社会影响非常严重。
1我国深基坑的几个特点
1.1深基坑工程具有很强的个性
深基坑工程不仅与当地的工程地质条件和水文地质条件有关,还与基坑相邻建筑物、构筑物及市政地下管网的位置、抵御变形的能力、重要性以及周围场地条件有关。因此,对深基坑工程进行分类,对支护结构允许变形规定统一的标准是比较困难的,应结合地区具体情况具體运用。
1.2基坑工程具有很强的综合性
深基坑工程涉及土力学中强度(或称稳定)、变形和渗流3个基本课题,三者融溶一起需要综合处理。有的基坑工程土压力引起支护结构的稳定性问题是主要矛盾,有的土中渗流引起土破坏是主要矛盾,有的基坑周围地面变形是主要矛盾。深基坑工程的区域性和个性强也表现在这一方面。同时,深基坑工程是岩土工程、结构工程及施工技术相互交*的学科,是多种复杂因素相互影响的系统工程,是理论上尚待发展的综合技术学科。
1.3深基坑工程具有较强的环境效应
深基坑工程的开挖,必将引起周围地基中地下水位变化和应力场的改变,导致周围地基土体的变形,对相邻建筑物、构筑物及市政地下管网产生影响。影响严重的将危及相邻建筑物、构筑物及市政地下管网的安全与正常使用。大量土方运输也对交通产生影响。所以应注意其环境效应。
1.4深基坑工程具有较大工程量及较紧工期
由于深基坑开挖深度一般较大,工程量比浅基坑增加很多。抓紧施工工期,不仅是施工管理上的要求,它对减小基坑变形,减小基坑周围环境的变形也具有特别的意义。
1.5深基坑工程具有很高的质量要求
由于深基坑开挖的区域也就是将来地下结构施工的区域,甚至有时深基坑的支护结构还是地下永久结构的一部分,而地下结构的好坏又将直接影响到上部结构,所以,必须保证深基坑工程的质量,才能保证地下结构和上部结构的工程质量,创造一个良好的前提条件,进而保证整幢建筑物的工程质量。另一方面,由于深基坑工程中的挖方量大,土体中原有天然应力的释放也大,这就使基坑周围环境的不均匀沉降加大,使基坑周围的建筑物出现不利的拉应力,地下管线的某些部位出现应力集中等,故深基坑工程的质量要求高。
2、基坑支护类型
深基坑支护的传统施工方法是板桩支撑系统或板桩锚拉系统,其优点是材料可以回收,缺点是支撑往往是在开挖之后施加的,拔出板桩时又会引起土体的进一步变形。目前工程所采用的支护结构型式多样,按其受力性能大致可分为四大类,即悬臂式支护结构、单(多)支点混合结构、重力式挡土结构及拱式支护结构,其主要型式如图1所示。
4、深基坑技术的发展趋势
4.1深基坑支护结构方案优选
深基坑支护结构的设计与施工不同于上部结构。除地基土类别的不同外,地下水位的高低、土的物理力学性质指标及周边环境等,都直接与支护结构的选型有关。支护结构型式选择合理,就能做到安全可靠、施工顺利、缩短工期,带来可观的经济与社会效益,可见支护结构形式的优化选择是深基坑支护技术发展的必然趋势。
此外,为达到方案的最优化,有时根据地层土质的变化、基坑周围环境,也可采用更为灵活的组合支护方案。
4.2施工工艺发展趋势
(1)土钉墙方案的大量实施,使得喷射混凝土技术得以充分运用和发展。为减少喷射混凝土的回弹量以及保护环境的需要,湿式喷射混凝土将逐步取代干式喷射混凝土。
(2)基坑向着深、大、周围环境复杂的方向发展,使得深基坑开挖与支护的难度愈来愈大。受地下空间的限制,内支撑或新型锚杆(如可拆式锚杆、抗拔力较大的全程应力复合型锚杆)将逐渐得以推广运用。
(3)为减少基坑工程对带来的环境效应(如因降水引起的地面沉降),或出于保护地下水资源的需要,有时基坑采用帷幕型式进行支护,除地下连续墙外,一般采用旋喷桩或深层搅拌桩等工法构筑止水帷幕。目前,有将水利工程中防渗墙的工法引入到基坑工程中的趋势。
(4)基坑降水时,为减少因降水引起的地面附加沉降或对临近建(构)筑物造成的影响,可采用井点回灌技术。
(5)在软土地区,为避免基坑底部隆起、造成支护结构水平位移加大和临近建(构)筑物下沉,可采用深层搅拌桩或注浆技术对基坑底部土体进行加固,即提高支护结构被动区土体强度的方法。
(6)为减少坑壁土体的侧向变形,可以通过基坑内外双液快速注浆加固土体;也可以对支撑(或拉结)施加预应力;还可以调整挖土进度以及支撑的施工程序等措施来限制基坑的侧向变形。
5、深基坑支护当前存在的问题
5.1支护结构设计计算与实际受力不符
目前,深基坑支护结构的设计计算仍基于极限平衡理论,但支护结构的实际受力并不那么简单。工程实践证明,有的支护结构的按极限平衡理论计算的安全系数,从理论上讲是绝对安全的,但却发生破坏;有的支护结构却恰恰相反,即安全系数虽然比较小,甚至达不到规范的要求,但在实际工程中获得成功。极限平衡理论是深基坑支护结构的一种静态设计,而实际上开挖的土体是一种动态平衡状态,也是一个松弛过程,随着时间的延长,土体强度逐渐下降,并产生一定的变形。这说明在设计中必须给予充分的考虑,但在目前的设计计算中却常被忽视。
5.2 设计中土体的物理力学参数选择不当
深基坑支护结构所承担的土压力大小直接影响其安全度,但要精确地计算土压力目前还十分困难,至今仍在采用库仑公式或郎肯公式。关于土体物理力学参数的选择是一个十分复杂的问题,尤其在深基坑开挖后,三参数是可变值,很难准确计算出支护结构的实际受力。
在支护结构设计中,如果对地基土体的物理力学参数取值不准,将对设计的结果产生很大的影响。试验数据表明:内摩擦角ψ值相差50,主动土压力P就会相差10;原土体的Ca值与开挖后土体的Cb值,则差别更大。施工工艺和支护结构形式不同,对土体的物理力学参数的选择是支护结构设计中的关键。
5.3深基坑开挖存在的空间效应考虑不周
深基坑开挖中大量的实测资料表明:基坑周边向基坑内发生的水平位移是中间大两边小。深基坑边坡失稳常常以长边的居中位置发生。这说明深基坑开挖是一个空间问题。
传统的深基坑支护结构的设计是按平面应变问题处理的。对一些细长条基坑来讲,这种平面应变假设比较符合实际,而对近似方形或长方形深基坑则差别比较大。所以,在未能进行空间问题处理前而需按平面应变假设设计时,支护结构的构造要适当调整,以适应开挖空间效应的要求。
6、结束语
实践证明,该工程深基坑支护采用排桩和钢筋混凝土内支撑体系,安全经济地控制了基坑变形;地下水控制采用联合处理方式,即侧壁采用水泥土搅拌桩非落地式帷幕和中深井降水的联合处理方式,降低了地下水位,同时减少了降水对周边建筑物的沉降影响。
参考文献:
[1]张欣.深基坑支护技术应用浅析[J].建筑技术开发.2005
[2]徐至钧.深基坑工程逆作法施工[J].住宅科技.2000
[3]高振锋,叶可明,王允恭,谢卫兵.逆作法施工的设计方法[J].施工技术,2001
[4]晏伟.逆作法施工技术的探讨与应用[J].安徽建筑,2002
[5]张璞,柳荣华. SMW工法在深基坑工程中的应用[J].岩石力学与工程学报, 2000
[6]胡强,郭志川,刘宁,车薇.深基坑支撑体系可靠度计算研究[J].河海大学学报(自然科学版), 2003
[7]程明亮,刘振环.岩土锚固技术在基坑支护中的应用[J].铁道建筑,2005
[8]周文杰.沉井在工程中的应用[J].安徽建筑,2001
[9]刘建航,侯学渊.基础工程手册[M].北京:中国建筑工业出版社,1999
[10]邹大庆.沉箱工法[J].佳木斯大学学报(自然科学版).2003
注:文章内所有公式及图表请用PDF形式查看。
0 前言
随着社会的快速发展,城市基础设施建设也加快进行。由于深基坑支护体系一般为临时性工程,往往得不到应有的重视,致使深基坑工程支护体系事故发生率较高;而安全事故一旦发生,不仅延误工期,造成较大经济损失,往往对城市周边环境影响很大,社会影响非常严重。
1我国深基坑的几个特点
1.1深基坑工程具有很强的个性
深基坑工程不仅与当地的工程地质条件和水文地质条件有关,还与基坑相邻建筑物、构筑物及市政地下管网的位置、抵御变形的能力、重要性以及周围场地条件有关。因此,对深基坑工程进行分类,对支护结构允许变形规定统一的标准是比较困难的,应结合地区具体情况具體运用。
1.2基坑工程具有很强的综合性
深基坑工程涉及土力学中强度(或称稳定)、变形和渗流3个基本课题,三者融溶一起需要综合处理。有的基坑工程土压力引起支护结构的稳定性问题是主要矛盾,有的土中渗流引起土破坏是主要矛盾,有的基坑周围地面变形是主要矛盾。深基坑工程的区域性和个性强也表现在这一方面。同时,深基坑工程是岩土工程、结构工程及施工技术相互交*的学科,是多种复杂因素相互影响的系统工程,是理论上尚待发展的综合技术学科。
1.3深基坑工程具有较强的环境效应
深基坑工程的开挖,必将引起周围地基中地下水位变化和应力场的改变,导致周围地基土体的变形,对相邻建筑物、构筑物及市政地下管网产生影响。影响严重的将危及相邻建筑物、构筑物及市政地下管网的安全与正常使用。大量土方运输也对交通产生影响。所以应注意其环境效应。
1.4深基坑工程具有较大工程量及较紧工期
由于深基坑开挖深度一般较大,工程量比浅基坑增加很多。抓紧施工工期,不仅是施工管理上的要求,它对减小基坑变形,减小基坑周围环境的变形也具有特别的意义。
1.5深基坑工程具有很高的质量要求
由于深基坑开挖的区域也就是将来地下结构施工的区域,甚至有时深基坑的支护结构还是地下永久结构的一部分,而地下结构的好坏又将直接影响到上部结构,所以,必须保证深基坑工程的质量,才能保证地下结构和上部结构的工程质量,创造一个良好的前提条件,进而保证整幢建筑物的工程质量。另一方面,由于深基坑工程中的挖方量大,土体中原有天然应力的释放也大,这就使基坑周围环境的不均匀沉降加大,使基坑周围的建筑物出现不利的拉应力,地下管线的某些部位出现应力集中等,故深基坑工程的质量要求高。
2、基坑支护类型
深基坑支护的传统施工方法是板桩支撑系统或板桩锚拉系统,其优点是材料可以回收,缺点是支撑往往是在开挖之后施加的,拔出板桩时又会引起土体的进一步变形。目前工程所采用的支护结构型式多样,按其受力性能大致可分为四大类,即悬臂式支护结构、单(多)支点混合结构、重力式挡土结构及拱式支护结构,其主要型式如图1所示。
4、深基坑技术的发展趋势
4.1深基坑支护结构方案优选
深基坑支护结构的设计与施工不同于上部结构。除地基土类别的不同外,地下水位的高低、土的物理力学性质指标及周边环境等,都直接与支护结构的选型有关。支护结构型式选择合理,就能做到安全可靠、施工顺利、缩短工期,带来可观的经济与社会效益,可见支护结构形式的优化选择是深基坑支护技术发展的必然趋势。
此外,为达到方案的最优化,有时根据地层土质的变化、基坑周围环境,也可采用更为灵活的组合支护方案。
4.2施工工艺发展趋势
(1)土钉墙方案的大量实施,使得喷射混凝土技术得以充分运用和发展。为减少喷射混凝土的回弹量以及保护环境的需要,湿式喷射混凝土将逐步取代干式喷射混凝土。
(2)基坑向着深、大、周围环境复杂的方向发展,使得深基坑开挖与支护的难度愈来愈大。受地下空间的限制,内支撑或新型锚杆(如可拆式锚杆、抗拔力较大的全程应力复合型锚杆)将逐渐得以推广运用。
(3)为减少基坑工程对带来的环境效应(如因降水引起的地面沉降),或出于保护地下水资源的需要,有时基坑采用帷幕型式进行支护,除地下连续墙外,一般采用旋喷桩或深层搅拌桩等工法构筑止水帷幕。目前,有将水利工程中防渗墙的工法引入到基坑工程中的趋势。
(4)基坑降水时,为减少因降水引起的地面附加沉降或对临近建(构)筑物造成的影响,可采用井点回灌技术。
(5)在软土地区,为避免基坑底部隆起、造成支护结构水平位移加大和临近建(构)筑物下沉,可采用深层搅拌桩或注浆技术对基坑底部土体进行加固,即提高支护结构被动区土体强度的方法。
(6)为减少坑壁土体的侧向变形,可以通过基坑内外双液快速注浆加固土体;也可以对支撑(或拉结)施加预应力;还可以调整挖土进度以及支撑的施工程序等措施来限制基坑的侧向变形。
5、深基坑支护当前存在的问题
5.1支护结构设计计算与实际受力不符
目前,深基坑支护结构的设计计算仍基于极限平衡理论,但支护结构的实际受力并不那么简单。工程实践证明,有的支护结构的按极限平衡理论计算的安全系数,从理论上讲是绝对安全的,但却发生破坏;有的支护结构却恰恰相反,即安全系数虽然比较小,甚至达不到规范的要求,但在实际工程中获得成功。极限平衡理论是深基坑支护结构的一种静态设计,而实际上开挖的土体是一种动态平衡状态,也是一个松弛过程,随着时间的延长,土体强度逐渐下降,并产生一定的变形。这说明在设计中必须给予充分的考虑,但在目前的设计计算中却常被忽视。
5.2 设计中土体的物理力学参数选择不当
深基坑支护结构所承担的土压力大小直接影响其安全度,但要精确地计算土压力目前还十分困难,至今仍在采用库仑公式或郎肯公式。关于土体物理力学参数的选择是一个十分复杂的问题,尤其在深基坑开挖后,三参数是可变值,很难准确计算出支护结构的实际受力。
在支护结构设计中,如果对地基土体的物理力学参数取值不准,将对设计的结果产生很大的影响。试验数据表明:内摩擦角ψ值相差50,主动土压力P就会相差10;原土体的Ca值与开挖后土体的Cb值,则差别更大。施工工艺和支护结构形式不同,对土体的物理力学参数的选择是支护结构设计中的关键。
5.3深基坑开挖存在的空间效应考虑不周
深基坑开挖中大量的实测资料表明:基坑周边向基坑内发生的水平位移是中间大两边小。深基坑边坡失稳常常以长边的居中位置发生。这说明深基坑开挖是一个空间问题。
传统的深基坑支护结构的设计是按平面应变问题处理的。对一些细长条基坑来讲,这种平面应变假设比较符合实际,而对近似方形或长方形深基坑则差别比较大。所以,在未能进行空间问题处理前而需按平面应变假设设计时,支护结构的构造要适当调整,以适应开挖空间效应的要求。
6、结束语
实践证明,该工程深基坑支护采用排桩和钢筋混凝土内支撑体系,安全经济地控制了基坑变形;地下水控制采用联合处理方式,即侧壁采用水泥土搅拌桩非落地式帷幕和中深井降水的联合处理方式,降低了地下水位,同时减少了降水对周边建筑物的沉降影响。
参考文献:
[1]张欣.深基坑支护技术应用浅析[J].建筑技术开发.2005
[2]徐至钧.深基坑工程逆作法施工[J].住宅科技.2000
[3]高振锋,叶可明,王允恭,谢卫兵.逆作法施工的设计方法[J].施工技术,2001
[4]晏伟.逆作法施工技术的探讨与应用[J].安徽建筑,2002
[5]张璞,柳荣华. SMW工法在深基坑工程中的应用[J].岩石力学与工程学报, 2000
[6]胡强,郭志川,刘宁,车薇.深基坑支撑体系可靠度计算研究[J].河海大学学报(自然科学版), 2003
[7]程明亮,刘振环.岩土锚固技术在基坑支护中的应用[J].铁道建筑,2005
[8]周文杰.沉井在工程中的应用[J].安徽建筑,2001
[9]刘建航,侯学渊.基础工程手册[M].北京:中国建筑工业出版社,1999
[10]邹大庆.沉箱工法[J].佳木斯大学学报(自然科学版).2003
注:文章内所有公式及图表请用PDF形式查看。