基于局部中心度量的边界点划分密度聚类算法

来源 :计算机工程与科学 | 被引量 : 0次 | 上传用户:czw6229835
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
针对聚类算法在检测任意簇时精确度不高、迭代次数多及效果不佳等缺点,提出了基于局部中心度量的边界点划分密度聚类算法——DBLCM.在局部中心度量的限制下,数据点被划分到核心区域或边界区域.核心区域的点按照互近邻优先成簇的分配方式形成初始簇,边界区域的点参考互近邻中距离最近点所在簇进行分配,从而得到最终簇.为验证算法的有效性,将DBLCM与3个经典算法和3个近几年新提出的优秀算法,在包含任意形状、任意密度的二维数据集和任意维度的多维数据集上进行测试.另外,为了验证DBLCM算法中参数k的敏感性,在所用的数据集上做了k值与簇质量的相关性测试.实验结果表明,DBLCM算法具有识别精度高,检测任意簇效果好和无需迭代等优点,综合性能优于6个对比算法.
其他文献
敏捷硬件设计方法中,RT L建模常使用自定义的描述语言,并将设计转换为某种中间格式,为设计验证带来了新挑战.符号模拟技术是(限界)模型检验、等价性检查和测试生成等验证技术的基础,为构建敏捷硬件设计方法验证技术基础,针对PyRTL语言及其中间格式,设计并实现了一个符号模拟器.介绍了符号模拟器的设计原理、转换规则等关键技术.实验结果表明了所实现的符号模拟器的正确性.
行为检测是视频理解与计算机视觉领域炙手可热的研究内容,备受国内外学者的关注,在智能监控、人机交互等多领域被广泛应用.随着科技的进步,深度学习在图像分类领域取得了重大突破,将基于深度学习的识别方法应用于人体行为检测研究已成为行为检测中的热点.基于此,首先对几种常用于行为检测的数据集,及近几年深度学习在行为检测领域的研究现状进行了介绍;接着分析了行为检测方法的基本流程,以及几种常用的基于深度学习的检测方法;最后,从方法性能优劣、应用前景等方面对人体行为检测方法的尚存问题与未来发展趋势进行了分析和展望.