论文部分内容阅读
提出了一种基于量子谐振子模型的聚类中心选取算法.该算法以量子谐振子波函数从高能态到基态过程中的概率变化过程为理论模型来描述聚类问题中数据对象向聚类中心点的聚集行为,能够快速查找到最优的聚类个数及较好的聚类中心点所在的网格;数据读入网格结构之后,算法的处理时间与数据集规模无关.实验结果表明:CCSA-QHOM算法较适合于处理每个子类局部区域的网格密度分布呈单峰特性的数据集的聚类中心选择问题.