论文部分内容阅读
钢板表面缺陷严重降低钢板的耐磨性、耐高温性、耐腐蚀性、抗疲劳强度等性能,因此,钢板表面缺陷的检测就显得尤为重要。本文基于机器视觉采用Matlab图像处理技术对钢板表面缺陷进行检测识别。在不同光照条件下采集钢板表面图像,分别进行图像处理,讨论分析不同光照条件和去噪方法对检测结果的影响。首先对缺陷图像进行预处理,然后将预处理后的图像二值化及形态学图像处理,使图像背景与对象图形分离,提取出表面缺陷特征,计算缺陷的面积和周长。通过对图像细化和骨架提取线性缺陷,计算出缺陷长度,并且通过对像素的标定,将像素单位