论文部分内容阅读
在变压器保护中关于励磁涌流状态的识别一直是困扰继电保护研究人员的棘手问题。本文基于人工神经网嵚纾酆峡悸潜溲蛊骼庞苛髯刺凸收献刺奶卣鳎岢霾建立了一个三层前向神经网络模型,用来实现变压器的微机嵄;ぁ@茫牛停裕薪辛舜罅康姆抡婕扑悖扑憬峁魑祶练样本,对所建立的神经网络模型进行训练。对该模型进行故嵳献刺煅榈慕峁砻鳎⒌纳窬缒芄欢员溲蛊魉鶏发生的故障状态作出正确响应,响应时间小于10ms。本文所嵦岢龅姆椒ㄊ抢蒙窬缡迪治⒒溲蛊鞅;ぷ爸玫幕鶏础。
The identification of magnetizing inrush conditions in transformer protection has been a thorny issue for relay protection researchers. In this paper, based on artificial neural network, we have established a three-layer forward neural network model to realize the transformer microcomputer嵄 @ 牛 停 停 停 停 停 牛 牛 牛 牛 Shin Shin Shin Kang 抡 婕 Jie flutter Pu 魑 祶 training samples, the established neural network model for training. The model was so preoccupied with calcined palm trees as a result that the response time was less than 10ms. This article 嵦 岢 龅 Pepper ㄊ grab Meng 窬 缡 Di ⒒ ⒒ 溲 蛊 Mad Marting;