论文部分内容阅读
风电机组发电机具有结构复杂、维修困难的特点,为对其进行健康评估,结合去噪自编码器与稀疏自编码器的特点,对传统栈式自编码器模型进行改进,利用模型的重构误差监测风电机组发电机的运行状态。将经离线测试得到的重构误差与在线监测得到的重构误差进行分布差异性比对,通过融合3种差异指标得到风电机组发电机的健康度。利用河北某风场实际数据对健康评估模型进行训练测试,通过实例分析证明该模型能够有效跟踪风电机组发电机的状态变化,具有故障早期识别的作用。