论文部分内容阅读
针对说话人分段与聚类算法中先验知识不足的问题,利用基于信息瓶颈(IB)准则和基于隐马尔科夫模型fHMM)/高斯混合模型(GMM)方法间的互补性,提出了一种基于特征层融合的说话人分段与聚类算法。该算法将基于IB准则算法的输出结果进行对数变换和降维处理;然后利用变换后的特征与传统梅尔频率倒谱系数(MFCC)特征分别训练说话人GMM模型,并在得分域对说话人类别的得分进行加权融合;根据融合的得分,进行基于HMM/GMM模型的说话人分段与聚类。实验表明,融合后的特征可以为系统提供更多的先验信息,比传统方法的误配率降