论文部分内容阅读
针对人工蜂群(ABC)算法存在收敛速度慢、收敛精度低的问题,给出一种改进的人工蜂群算法用于数值函数优化问题。在ABC的邻域搜索公式中利用目标函数自适应调整步长,并根据迭代次数非线性减小侦查蜂的搜索范围。改进ABC算法提高了ABC算法的局部搜索能力,能够有效避免早熟收敛。基于6个标准测试函数的仿真实验表明,改进ABC算法的寻优能力有较大提高,对于多个高维多模态函数该算法可取得理论全局最优解。与对比算法相比,该算法具有更高的收敛精度,并且收敛速度更快。