论文部分内容阅读
目的:通过与单纯人工阅片进行比较,探讨基于DenseNet网络深度学习的人工智能肺结节自动检测系统鉴别肺结节良恶性的价值和优势。方法:搜集2015年1月-2017年12月本院510例肺结节CT检查病例,由医师组(按照从事胸部CT诊断的年限分为高级医师组和初级医师组)和人工智能组(基于DenseNet网络深度学习的人工智能系统)分别对所有肺结节进行良恶性的诊断,以病理结果为金标准,分别统计各组在不同大小肺结节(直径≤10 mm、10 mm<直径≤20 mm以及直径>20 mm)良恶性诊断上的敏感