Hydrogen embrittlement of X80 pipeline steel in H2S environment:Effect of hy-drogen charging time, h

来源 :矿物冶金与材料学报 | 被引量 : 0次 | 上传用户:fellting
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
This study investigated the susceptibility of X80 pipeline steel to hydrogen embrittlement given different hydrogen pre-charging times and hydrogen charging–releasing–recharging cycles in H2S environment. The fracture strain of the steel samples decreased with increasing hydro-gen pre-charging time; this steel degradation could almost be recovered after diffusible hydrogen was removed when the hydrogen pre-charging time was <8 d. However, unrecoverable degeneration occurred when the hydrogen pre-charging time extended to 16–30 d. Moreover, nanovoid formation meant that the hydrogen damage to the steel under intermittent hydrogen pre-charging–releasing–recharging conditions was more seri-ous than that under continuous hydrogen pre-charging conditions. This study illustrated that the mechanical degradation of steel is inevitable in an H2S environment even if diffusible hydrogen is removed or visible hydrogen-induced cracking is neglected. Furthermore, the steel samples showed premature fractures and exhibited a hydrogen fatigue effect because the repeated entry and release of diffusible hydrogen promoted the formation of vacancies that aggregated into nanovoids. Our results provide valuable information on the mechanical degradation of steel in an H2S environment, regarding the change rules of steel mechanical properties under different hydrogen pre-charging times and hydrogen charging–re-leasing–recharging cycles.
其他文献
网络拓扑结构识别对于网络的监测、管理、控制以及内部链路参数的估计都有重要意义。通常有两种方法进行网络拓扑识别:利用内部节点协作的传统方法和网络层析成像方法。网络
The wear resistance of iron (Fe)-matrix materials could be improved through the in situ formation of vanadium carbide particles (VCp) with high hardness. Howeve
酚氧化酶(ECl.10.3.1)能够催化单酚羟化成二酚(如多巴),并把二酚氧化成醌;醌在非酶促条件下形成最终的反应产物黑色素。酚氧化酶(phenoloxidase,PO)广泛存在于无脊椎动物和脊椎