论文部分内容阅读
谱聚类算法受到相似矩阵的影响以及没有使用先验信息,使得聚类结果有很大的局限性.针对这一问题,提出了一种基于L2,1范数和流形正则项的半监督谱聚类算法.一方面借助L2,1范数的鲁棒性学习到合理的相似矩阵;另一方面充分利用监督信息,不仅指导了初始相似矩阵的构造,而且引入流形正则项去调整模型,从而改善聚类效果.实验结果表明,所提出的聚类算法在人工数据集和真实数据集上的聚类结果较其他聚类算法更加有效.