论文部分内容阅读
Collaborative filtering (CF) is one of the most popular techniques behind the success of recommendation system. It predicts the interest of users by collecting information from past users who have the same opinions. The most popular approaches used in CF research area are Matrix factorization methods such as SVD.However,many wellknown recommendation systems do not use this method but still stick with Neighborhood models because of simplicity and explainability.There are some concs that limit neighborhood models to achieve higher prediction accuracy.To address these concs,we propose a new exponential fuzzy clustering (XFCM) algorithm by reformulating the clustering’s objective function with an exponential equation in order to improve the method for membership assignment.The proposed method assigns data to the clusters by aggressively excluding irrelevant data,which is better than other fuzzy C-means (FCM) variants.The experiments show that XFCM-based CF improved 6.9% over item-based method and 3.0% over SVD in terms of mean absolute error for 100 K and 1 M MovieLens dataset.