论文部分内容阅读
二次四元数系统XAX−BX=P是离散型Lyapunov方程正定解反问题的推广形式.本文在四元数体上讨论它的正定解存在性及迭代求解方法.利用等价二次方程的系数矩阵的极大极小特征值,获得其正定解的存在区间,并针对系数矩阵的不同情况构建出三种收敛的迭代格式.同时根据每种迭代的特点,给出了迭代初始矩阵的选取方法.最后通过四元数矩阵复算子实现Matlab环境下求解.数值算例验证了所给方法的有效及可行性.