论文部分内容阅读
基于图书馆业务系统中的借阅日志,构建数据仓储,采用SPSS数据挖掘中的聚类分析方法,挖掘读者与新书之间的分类相关度模式,通过个性化新书通报分类结果集,推荐读者感兴趣的新书。以笔者所在高校图书馆MELINETSⅡ系统中的读者借阅日志为例,设计并实现个性化新书通报推荐系统。
Based on the loan log in the library business system, the data warehouse is constructed. The clustering analysis method in SPSS data mining is used to explore the classification relevancy pattern between readers and new books. It is recommended that the reader be interested in New book Take the readers’ diary diary in MELINETS Ⅱ system of the university library as an example, we design and implement a personalized new book recommendation system.