论文部分内容阅读
语音信号在频域和离散余弦变换域等都具有良好的稀疏特性,满足压缩感知的先验条件,因此可以基于压缩感知对语音信号进行处理。语音压缩感知主要包括三个方面:稀疏基、观测矩阵和重构算法。其中,重构算法直接影响着重构信号的质量,是最重要的一部分。传统的语音压缩感知常基于正交匹配追踪算法进行重构。正交匹配追踪算法要求已知信号稀疏度,增加了实现的难度。为了提高语音信号的重构质量、简化实现过程,提出了一种基于平滑LD算法的语音压缩重构模型。平滑LD算法是用平滑函数逼近LD范数,它不需要提前知道信号的稀疏度,具有计算量低、重