论文部分内容阅读
针对环视鱼眼图像中目标几何畸变大导致建模难的问题,提出一种基于可变形卷积网络的实例分割方法,主要是在Mask R-CNN框架的基础上引入可变形卷积和可变形RoI Pooling(候选区域池化)来提升网络对几何畸变的建模能力.针对深度神经网络训练数据缺乏、易过拟合的问题,提出了基于多任务学习的训练方法.首先将现有的大规模普通图像数据集转换为鱼眼数据集来弥补训练数据不足的问题,然后采用多任务学习的训练方法将转换的图像和真实图像放在同一个框架中训练以提高网络的泛化能力.用该方法在真实的环视鱼眼图像上做测试