论文部分内容阅读
The microstructural evolution and mechanical properties of ultrafine-grained(UFG)CP-Ti after an inno-vative large-volume equal channel angular pressing(L-ECAP)and multi-directional forging(MDF)were systematically examined using monotonic tensile tests combined with transmission electron microscope(TEM)and electron backscatter diffraction(EBSD)techniques.Substantially refined and homogeneous microstructures were achieved after L-ECAP(8-pass and 12-pass)and MDF(2-cycle and 3-cycle),respec-tively,where the grain size distribution conformed to lognormal distribution.The grain refinement of 450℃L-ECAP is dominated by dynamic recrystallization(DRX)and dynamic recovery(DRV),while that of MDF is dominated by DRX.The iron impurities promote recrystallization by pinning-induced dislocation accumulation so that DRX is prone to occur at iron segregation regions during L-ECAP.The monotonic tensile results show that the strain hardening rate of CP-Ti increases with the decrease of grain size,while the continuous strain hardening ability decreases.The relationship between the average grain size and yield strength is in accordance with Hall-Petch relationship.Meanwhile,the individual strength-ening mechanisms were quantitatively examined by the modified model.The results indicate that the strengthening contribution of dislocation accumulation to yield strength is greater than that of grain refinement.