论文部分内容阅读
<正>一、问题背景我们知道,到两定点的距离之和为定值(定值大于两定点间的距离)的点的轨迹是椭圆,到两定点的距离之差为定值(定值大于零且小于两定点间的距离)的点的轨迹是双曲线.那么,到两定点的距离之商为定值(定值大于零且不等于1)的点的轨迹是什么呢?这就是由公元前3世纪下半叶古希腊数学家阿波罗尼斯(Apollonius of Perga,公元前262-公元前190)提出的几何作图问题,载于他的