论文部分内容阅读
电力负荷观测值由于受到各种因素的影响,正常的负荷数据中夹杂着许多脏数据,严重影响负荷预测的精度。对此提出了由自适应共振网络(ART网络)和超圆神经元网络(CC网络)组合而成的神经网络模型,并应用该模型清洗陕西省某地区的负荷数据,结果表明该模型能较好的完成脏数据的辨识任务,对负荷数据修正后能明显提高负荷预测精度。