论文部分内容阅读
摘要:本文介绍我校入选教育部精品视频公开课“人工智能PK人类智能”课程的建设情况,涉及本视频课程已具备的基礎条件、课程讲授内容的选定、课程特色、课程建设体会与存在问题等,可供借鉴。
关键词:精品课程;视频公开课;课程建设;人工智能
一、引言
中南大学的人工智能课程是国内高校最早开设的该课程之一。1987年清华大学出版社出版了我校蔡自兴和清华大学徐光祐编著的《人工智能及其应用》,成为国内率先出版的具有自主知识产权的人工智能教材,为人工智能课程提供了一部好教材,对人工智能在中国的传播和发展起到重大推动作用。
我校人工智能课程自开设以来已培养约30届学生,培养人数超过3000人。授课对象包括计算机、自动化专业的本科生和电子信息类等专业的研究生。2001年,我们研发的“人工智能网络课程”被评为优秀网络课程。2003年和2007年“人工智能”分别被评为首批国家精品课程和全国双语教学示范课程。同时,课程的相关网络资源和知识表示方法的课堂录像陆续上网,向全社会开放,成为学生复习和自学的有力手段和特色环境。
近年来随着国外名校的视频公开课风靡网络,建设我国自己的视频公开课已势在必行。在这种背景下,人工智能课程的等一批国家精品视频公开课应运而生。我们的“人工智能PK人类智能”的视频公开课入选国家精品视频公开课建设计划,已成为首批播出的课程之一,受到公众欢迎与好评。
二、讲授内容选定
人工智能是一门前沿交叉学科,也是一门与人类生活息息相关和公众颇感兴趣的科学。网络视频公开课是以大学生为服务主体,同时面向社会大众,是免费开放的科学与文化素质教育的网络视频课程与学术讲座。由于人工智能属于专业基礎课程,如何在有限的时间内讲述一个完整的专题,避免艰深的专业知识,让大多数人都能听懂并感兴趣,是安排视频课程内容时需要首先考虑的问题。为此,在内容安排上将重点放在专业史和热点研究介绍上,其目的是通过介绍学科的发展史和一些经典或热点问题的研究情况,激发大家对人工智能研究的兴趣,增进对人工智能知识的了解,认识到前沿科学其实离现实并不遥远。
在上述理念指导下,本视频课程并没有照搬平时上课的内容,而是精选了人工智能领域中一些具有代表性的内容进行介绍。首先概述人工智能的起源与发展历史,以及人工智能领域影响最大的三大流派及其认知观等。然后介绍人工智能中几种经典技术,包括推理证明技术、问题求解技术等。此外,对人工智能中公众最感兴趣的一个应用领域——机器人学进行阐述。最后,对人工智能的一些最新研究发展领域,如计算智能和群智能技术等进行讨论。具体内容安排如下:
第一讲:人工智能的诞生
长期以来人工智能充满了激烈争论,其发展过程不是一帆风顺的,在中国也历经了质疑、批评甚至打压,直至出现希望的曙光,形成今天的可喜局面,其过程可谓艰辛。该讲从不同角度对人工智能的定义进行介绍,分析其异同,介绍人工智能的起源与发展过程,特别是在中国的发展情况,让听众对什么是人工智能有个大致的了解。
第二讲:人工智能的学派
从符号主义为代表的经典人工智能到连接主义、行为主义,人工智能的研究可以说是从一家独秀走向百家争鸣。该讲介绍人工智能的主要学派,各自的理论基礎和认知观,并论述人工智能对社会、文化、经济等层面的影响。
第三讲:经典人工智能的推理技术
经典人工智能的有关推理技术和方法是早期人工智能研究的主要手段,用于研究基于经典逻辑的自动定理证明等问题,对人工智能学科的发展产生了深远的影响。本讲主要介绍基于数理逻辑方法的推理证明技术,尤其是定理证明方法的代表之一——消解原理。
第四讲:问题求解与搜索
问题求解技术是人工智能研究领域的一个核心问题,涉及问题表示和求解搜索两部分内容。这一讲主要介绍问题求解中的一种常用方法——状态空间法,阐述图搜索方法和求解策略,特别是引入启发式信息的启发式搜索方法。
第五讲:机器人学
机器人是人们听到人工智能时几乎第一时间联想到的事物。机器人学作为一门学科,该讲介绍机器人学的发展过程和机器人的分类,探讨机器人学与人工智能的关系,说明研究开发机器人技术的动机。
第六讲:人工智能的新领域——计算智能
经典人工智能虽在早期占有统治地位,但目前已经不再是研究热点。而计算智能则异军突起,成为智能学科中新的增长点。本讲主要介绍计算智能的几个主要分支神经计算、进化计算、模糊计算和人工生命的一些基礎知识。
第七讲:人工智能中的仿生学——群智能
人工智能是一门信息科学与生命科学等高度交叉的科学,不仅涉及到计算机、自动化、数学、信息学等学科,还涉及到心理学、脑科学、仿生学等各种学科。群智能就是仿生学在人工智能中应用的典型。该讲主要介绍受到蚁群和鸟群社会行为启发而构建的蚁群算法和粒群算法,将其转换为可计算模型,引入到问题优化求解中。
三、课程建设经验
由于授课对象的不同和授课时间的限制,在只有30分钟的一讲一主题情况下,要像平时上课那样详细讲解是不可能的,为此需要对视频公开课的材料进行重新组织。我们的人工智能课程作为首批国家精品课程,其教学资源还是比较丰富的,具有一定优势。
首先,使用主讲人编著的《人工智能及其应用》作为课程教材。根据教学对象不同,编撰了不同类型的教材,以适应不同层次学生的要求。2003年和2004年在清华大学出版社先后出版了《人工智能及其应用》第三版“本科生用书”和“研究生用书”。2005年在高等教育出版社出版了面向大专院校和网络课程的《人工智能基礎》,以及在国防科技大学出版社出版了面向管理类学生的《人工智能及其在决策系统中的应用》。2010年又出版了“十一五”规划教材《人工智能及其应用》第四版及《人工智能基礎》第二版,使教材与时俱进,不断创新,更好地为人工智能教学改革和人才培养服务。这些教材已为高水平课程建设和学科建设做出了重要贡献,也为视频网络课程提供了丰富的素材。
其次,教学资源丰富,知识融会沟通。课程主讲人也是国家级教学团队“智能科学基礎系列课程教学团队”的负责人,团队成员除承担人工智能课程教学外,还负责智能控制、机器人学等相关课程的教学。这些课程也都有对应的自编优秀教材,都可直接作为课程的参考资料。
“人工智能网络课程”具有明显特色(网络化、智能化和个性化),得到专家和同行的认可和肯定,被教育部评为国家级优秀网络课程。特别是更新后的向导学习、个性化以及算法实验,采用了人工智能技术本身来实现人工智能网络课程,具有显著的特色和先进性。网站上课程的教学大纲、教案、课件、实验指导书、课堂录像和参考文献一应俱全。人工智能相关的网络资源,如网站、新闻组、BBS等,包括了大量的文献资料、讨论、本领域研究的前沿动态、人工智能课程相关的演示动画 和实验等。
虽然有相当丰富的教学资源,但为了适应视频公开课的需要,在视频公开课材料的组织上仍然花费了大量的时间和精力。本视频公开课课程具有下列主要特色:
(1)材料翔实、图文并茂
人工智能的发展经过几代人的努力奋斗,其在中国的发展尤其曲折。在课程资料组织过程中,对许多重要理论与方法的提出者以及一些会议与纪念活动等介绍,基本上都配以图片。这些图片有的是自己的第一手资料,有些则是从网络搜索得到。这些图片的引入,给本来相当枯燥无味的文字和概念增加了趣味性和对观众的吸引力,也是视频教学优势的一个体现。
(2)深入浅出、直观生动
人工智能作为一门讲述前沿理论的专业基礎课,其复杂的技术、算法、理论是一般观众很难理解的。视频课程不可能在较短时间内将这些问题讲透,而是通过形象的动画说明基本原理和概念,激发学生进一步学习的兴趣,真正起到带“入门”的作用。这也是视频课程的优势所在。
(3)精选题材、注重趣味
人工智能是一门高度交叉的科学,涉及面极广。为了让观众尽可能全面地了解这门学科,公开课着力于讲授内容的精选。从人工智能的起源开始,分别介绍了经典人工智能的搜索推理技术、当前的研究热点计算智能和群智能技术,以及人们对人工智能最直观的印象——机器人学,形成一定的体系。在这些题材中包括了逻辑学、生物学、脑科学、神经学乃至仿生学等不同的学科交叉,力求使枯燥的科学理论变成美味的知识盛宴。
四、问题与体会
经过紧张的准备和拍摄过程,“人工智能PK人类智能”精品视频公开课终于上网与广大观众见面了。由于时间仓促和经验不足等原因,本视频课程仍存在一些不足之处,值得今后弥补。
(1)考虑到比较通俗易懂的要求,使没有相关专业基礎的公众也能够基本上听懂,因而将很大一部分内容的重点放在了专业史上,其专业深度不够。
(2)由于每讲必须在30分钟内讲完一个专题,因此难以对相关技术进行深入探讨,只能简要介绍其原理和概念,使观众能知其然,却没法知其所以然。
(3)国外的公开课基本上都是随堂录像,视频课讲的内容就是平时课堂讲授的内容。而我国的视频公开课课程却强调普及性,相应的牺牲了部分专业性,在定位上仍有犹豫。这可能是我们的公开课与国外公开课的一个重要差别。
要把我国的视频公开课建设好,不能盲目追求观看率和点击率。从课程性质上看,文史类课程由于受众面广,容易被更多的人群接受和理解,观看的人就自然会多。理工类课程由于受限于领域基礎知识,受众面相对较窄,其接受程度肯定较低。要真正建设一门好的视频公开课,还是应该明确定位,内容贵精不贵多,完整清晰的讲述好若干知识点,让观众真正有所收获就是成功的。
参考文献:
[1]傅京孙,蔡自兴,徐光祐,人工智能及其应用,北京:清华大学出版社,1987
[2]宋健,学科前沿的最精彩成就[C],见蔡自兴,徐光祐编著的人工智能及其应用(第四版)[M],北京:清华大学出版社,2010
[3]蔡自兴,徐光祐,人工智能及其应用(第三版),本科生用书[M],北京:清华大学出版社,2003
[4]蔡自兴,徐光祐,人工智能及其应用(第三版),研究生用书[M],北京:清华大学出版社,2004
[5]蔡自兴,蒙祖强,人工智能基礎[M],北京:高等教育出版社,2005
[6]蔡自兴,人工智能及其在决策系统中的应用[M],长沙:国防科学技术大学出版社,2005
[7]蔡自兴,徐光祐,人工智能及其应用(第四版)[M],北京:清华大学出版社,2010
[8]蔡自兴,蒙祖强,人工智能基礎(第二版)[M],北京:高等教育出版社,2010
[责任编辑:陈立民]
关键词:精品课程;视频公开课;课程建设;人工智能
一、引言
中南大学的人工智能课程是国内高校最早开设的该课程之一。1987年清华大学出版社出版了我校蔡自兴和清华大学徐光祐编著的《人工智能及其应用》,成为国内率先出版的具有自主知识产权的人工智能教材,为人工智能课程提供了一部好教材,对人工智能在中国的传播和发展起到重大推动作用。
我校人工智能课程自开设以来已培养约30届学生,培养人数超过3000人。授课对象包括计算机、自动化专业的本科生和电子信息类等专业的研究生。2001年,我们研发的“人工智能网络课程”被评为优秀网络课程。2003年和2007年“人工智能”分别被评为首批国家精品课程和全国双语教学示范课程。同时,课程的相关网络资源和知识表示方法的课堂录像陆续上网,向全社会开放,成为学生复习和自学的有力手段和特色环境。
近年来随着国外名校的视频公开课风靡网络,建设我国自己的视频公开课已势在必行。在这种背景下,人工智能课程的等一批国家精品视频公开课应运而生。我们的“人工智能PK人类智能”的视频公开课入选国家精品视频公开课建设计划,已成为首批播出的课程之一,受到公众欢迎与好评。
二、讲授内容选定
人工智能是一门前沿交叉学科,也是一门与人类生活息息相关和公众颇感兴趣的科学。网络视频公开课是以大学生为服务主体,同时面向社会大众,是免费开放的科学与文化素质教育的网络视频课程与学术讲座。由于人工智能属于专业基礎课程,如何在有限的时间内讲述一个完整的专题,避免艰深的专业知识,让大多数人都能听懂并感兴趣,是安排视频课程内容时需要首先考虑的问题。为此,在内容安排上将重点放在专业史和热点研究介绍上,其目的是通过介绍学科的发展史和一些经典或热点问题的研究情况,激发大家对人工智能研究的兴趣,增进对人工智能知识的了解,认识到前沿科学其实离现实并不遥远。
在上述理念指导下,本视频课程并没有照搬平时上课的内容,而是精选了人工智能领域中一些具有代表性的内容进行介绍。首先概述人工智能的起源与发展历史,以及人工智能领域影响最大的三大流派及其认知观等。然后介绍人工智能中几种经典技术,包括推理证明技术、问题求解技术等。此外,对人工智能中公众最感兴趣的一个应用领域——机器人学进行阐述。最后,对人工智能的一些最新研究发展领域,如计算智能和群智能技术等进行讨论。具体内容安排如下:
第一讲:人工智能的诞生
长期以来人工智能充满了激烈争论,其发展过程不是一帆风顺的,在中国也历经了质疑、批评甚至打压,直至出现希望的曙光,形成今天的可喜局面,其过程可谓艰辛。该讲从不同角度对人工智能的定义进行介绍,分析其异同,介绍人工智能的起源与发展过程,特别是在中国的发展情况,让听众对什么是人工智能有个大致的了解。
第二讲:人工智能的学派
从符号主义为代表的经典人工智能到连接主义、行为主义,人工智能的研究可以说是从一家独秀走向百家争鸣。该讲介绍人工智能的主要学派,各自的理论基礎和认知观,并论述人工智能对社会、文化、经济等层面的影响。
第三讲:经典人工智能的推理技术
经典人工智能的有关推理技术和方法是早期人工智能研究的主要手段,用于研究基于经典逻辑的自动定理证明等问题,对人工智能学科的发展产生了深远的影响。本讲主要介绍基于数理逻辑方法的推理证明技术,尤其是定理证明方法的代表之一——消解原理。
第四讲:问题求解与搜索
问题求解技术是人工智能研究领域的一个核心问题,涉及问题表示和求解搜索两部分内容。这一讲主要介绍问题求解中的一种常用方法——状态空间法,阐述图搜索方法和求解策略,特别是引入启发式信息的启发式搜索方法。
第五讲:机器人学
机器人是人们听到人工智能时几乎第一时间联想到的事物。机器人学作为一门学科,该讲介绍机器人学的发展过程和机器人的分类,探讨机器人学与人工智能的关系,说明研究开发机器人技术的动机。
第六讲:人工智能的新领域——计算智能
经典人工智能虽在早期占有统治地位,但目前已经不再是研究热点。而计算智能则异军突起,成为智能学科中新的增长点。本讲主要介绍计算智能的几个主要分支神经计算、进化计算、模糊计算和人工生命的一些基礎知识。
第七讲:人工智能中的仿生学——群智能
人工智能是一门信息科学与生命科学等高度交叉的科学,不仅涉及到计算机、自动化、数学、信息学等学科,还涉及到心理学、脑科学、仿生学等各种学科。群智能就是仿生学在人工智能中应用的典型。该讲主要介绍受到蚁群和鸟群社会行为启发而构建的蚁群算法和粒群算法,将其转换为可计算模型,引入到问题优化求解中。
三、课程建设经验
由于授课对象的不同和授课时间的限制,在只有30分钟的一讲一主题情况下,要像平时上课那样详细讲解是不可能的,为此需要对视频公开课的材料进行重新组织。我们的人工智能课程作为首批国家精品课程,其教学资源还是比较丰富的,具有一定优势。
首先,使用主讲人编著的《人工智能及其应用》作为课程教材。根据教学对象不同,编撰了不同类型的教材,以适应不同层次学生的要求。2003年和2004年在清华大学出版社先后出版了《人工智能及其应用》第三版“本科生用书”和“研究生用书”。2005年在高等教育出版社出版了面向大专院校和网络课程的《人工智能基礎》,以及在国防科技大学出版社出版了面向管理类学生的《人工智能及其在决策系统中的应用》。2010年又出版了“十一五”规划教材《人工智能及其应用》第四版及《人工智能基礎》第二版,使教材与时俱进,不断创新,更好地为人工智能教学改革和人才培养服务。这些教材已为高水平课程建设和学科建设做出了重要贡献,也为视频网络课程提供了丰富的素材。
其次,教学资源丰富,知识融会沟通。课程主讲人也是国家级教学团队“智能科学基礎系列课程教学团队”的负责人,团队成员除承担人工智能课程教学外,还负责智能控制、机器人学等相关课程的教学。这些课程也都有对应的自编优秀教材,都可直接作为课程的参考资料。
“人工智能网络课程”具有明显特色(网络化、智能化和个性化),得到专家和同行的认可和肯定,被教育部评为国家级优秀网络课程。特别是更新后的向导学习、个性化以及算法实验,采用了人工智能技术本身来实现人工智能网络课程,具有显著的特色和先进性。网站上课程的教学大纲、教案、课件、实验指导书、课堂录像和参考文献一应俱全。人工智能相关的网络资源,如网站、新闻组、BBS等,包括了大量的文献资料、讨论、本领域研究的前沿动态、人工智能课程相关的演示动画 和实验等。
虽然有相当丰富的教学资源,但为了适应视频公开课的需要,在视频公开课材料的组织上仍然花费了大量的时间和精力。本视频公开课课程具有下列主要特色:
(1)材料翔实、图文并茂
人工智能的发展经过几代人的努力奋斗,其在中国的发展尤其曲折。在课程资料组织过程中,对许多重要理论与方法的提出者以及一些会议与纪念活动等介绍,基本上都配以图片。这些图片有的是自己的第一手资料,有些则是从网络搜索得到。这些图片的引入,给本来相当枯燥无味的文字和概念增加了趣味性和对观众的吸引力,也是视频教学优势的一个体现。
(2)深入浅出、直观生动
人工智能作为一门讲述前沿理论的专业基礎课,其复杂的技术、算法、理论是一般观众很难理解的。视频课程不可能在较短时间内将这些问题讲透,而是通过形象的动画说明基本原理和概念,激发学生进一步学习的兴趣,真正起到带“入门”的作用。这也是视频课程的优势所在。
(3)精选题材、注重趣味
人工智能是一门高度交叉的科学,涉及面极广。为了让观众尽可能全面地了解这门学科,公开课着力于讲授内容的精选。从人工智能的起源开始,分别介绍了经典人工智能的搜索推理技术、当前的研究热点计算智能和群智能技术,以及人们对人工智能最直观的印象——机器人学,形成一定的体系。在这些题材中包括了逻辑学、生物学、脑科学、神经学乃至仿生学等不同的学科交叉,力求使枯燥的科学理论变成美味的知识盛宴。
四、问题与体会
经过紧张的准备和拍摄过程,“人工智能PK人类智能”精品视频公开课终于上网与广大观众见面了。由于时间仓促和经验不足等原因,本视频课程仍存在一些不足之处,值得今后弥补。
(1)考虑到比较通俗易懂的要求,使没有相关专业基礎的公众也能够基本上听懂,因而将很大一部分内容的重点放在了专业史上,其专业深度不够。
(2)由于每讲必须在30分钟内讲完一个专题,因此难以对相关技术进行深入探讨,只能简要介绍其原理和概念,使观众能知其然,却没法知其所以然。
(3)国外的公开课基本上都是随堂录像,视频课讲的内容就是平时课堂讲授的内容。而我国的视频公开课课程却强调普及性,相应的牺牲了部分专业性,在定位上仍有犹豫。这可能是我们的公开课与国外公开课的一个重要差别。
要把我国的视频公开课建设好,不能盲目追求观看率和点击率。从课程性质上看,文史类课程由于受众面广,容易被更多的人群接受和理解,观看的人就自然会多。理工类课程由于受限于领域基礎知识,受众面相对较窄,其接受程度肯定较低。要真正建设一门好的视频公开课,还是应该明确定位,内容贵精不贵多,完整清晰的讲述好若干知识点,让观众真正有所收获就是成功的。
参考文献:
[1]傅京孙,蔡自兴,徐光祐,人工智能及其应用,北京:清华大学出版社,1987
[2]宋健,学科前沿的最精彩成就[C],见蔡自兴,徐光祐编著的人工智能及其应用(第四版)[M],北京:清华大学出版社,2010
[3]蔡自兴,徐光祐,人工智能及其应用(第三版),本科生用书[M],北京:清华大学出版社,2003
[4]蔡自兴,徐光祐,人工智能及其应用(第三版),研究生用书[M],北京:清华大学出版社,2004
[5]蔡自兴,蒙祖强,人工智能基礎[M],北京:高等教育出版社,2005
[6]蔡自兴,人工智能及其在决策系统中的应用[M],长沙:国防科学技术大学出版社,2005
[7]蔡自兴,徐光祐,人工智能及其应用(第四版)[M],北京:清华大学出版社,2010
[8]蔡自兴,蒙祖强,人工智能基礎(第二版)[M],北京:高等教育出版社,2010
[责任编辑:陈立民]