论文部分内容阅读
[目的 /意义]从学术文本词汇功能的角度出发,考虑科研文献中词汇的语义功能,设计和实现一个基于词汇功能识别的科研文献分析系统,在一定程度上弥补现有科研文献分析系统的不足之处。[方法 /过程]首先阐述学术文本词汇功能的定义及其识别研究的现状进展;在此基础上,对系统思路、功能模块进行设计;最后,选取1994-2013年CNKI中计算机领域的文献作为数据来源,实现一个基于词汇功能识别的科研文献分析系统CS-LAS。[结果 /结论]CS-LAS可以满足科研工作者更为细粒度的信息需求,对于传统学术数据库的检索结果有一定的优化,同时实现对某一学科的研究热点和研究趋势的合理把握和可视化呈现。
[Purpose / Significance] Considering the semantic function of vocabulary in scientific literature from the perspective of academic vocabulary function, we designed and implemented a scientific literature analysis system based on vocabulary function recognition to make up for the deficiencies of existing scientific literature analysis system Where. [Method / Process] Firstly, the definition of the function of academic text vocabulary and the progress of the research on its identification are described. Based on this, the system ideas and functional modules are designed. Finally, the literature of the computer field in CNKI from 1994 to 2013 is selected as the data Source, to realize a CS-LAS based on lexical function recognition. [Result / Conclusion] CS-LAS can satisfy more detailed information needs of researchers and optimize the retrieval results of traditional academic databases. At the same time, CS-LAS can achieve a reasonable grasp and visualization of research hot spots and research trends of a subject Rendered.