论文部分内容阅读
随着无人驾驶汽车的快速发展,仅依靠单一传感器的环境感知已经无法满足车辆在复杂交通场景下的目标检测需求。融合多种传感器数据已成为无人驾驶汽车的主流感知方案。提出一种基于激光点云与图像信息融合的交通环境车辆检测方法。首先,利用深度学习方法对激光雷达和摄像头传感器所采集的数据分别进行目标检测;其次,利用匈牙利算法对两种目标检测结果进行实时目标跟踪,进而对两种传感器检测及跟踪结果的特征进行最优匹配;最后,将已匹配及未匹配的目标进行择优输出,作为最终感知结果。利用公开数据集KITTI的部分交通环境跟踪序列及实